98%
921
2 minutes
20
KIF1A, a neuron-specific Kinesin-3 motor, is indispensable for long-distance axonal transport and nuclear migration, processes vital for neuronal function. Using MINFLUX tracking, we reveal that KIF1A predominantly adopts a two-heads-bound state, even under ATP-limiting conditions, challenging prior models proposing a one-head-bound rate-limiting step. This two-heads-bound conformation, stabilized by interactions between the positively charged K-loop and negatively charged tubulin tails, enhances microtubule affinity and minimizes detachment. The shorter neck linker facilitates inter-head tension, keeping the heads out of phase and enabling highly coordinated stepping. In contrast, Kinesin-1 (KIF5B) transitions to a one-head-bound state under similar conditions, limiting its processivity. Perturbing KIF1A's mechanochemical cycle by prolonging its one-head-bound state significantly reduces processivity, underscoring the critical role of the two-heads-bound state in motility. These findings establish a mechanistic framework for understanding KIF1A's adaptations for neuronal transport and dysfunction in neurological diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11761605 | PMC |
http://dx.doi.org/10.1101/2025.01.14.632505 | DOI Listing |
Biomolecules
May 2025
Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
At physiological or saturating ATP concentrations, some families of kinesin motors, such as kinesin-1 and kinesin-2, exhibit a predominant two-heads-bound (2HB) state during their stepping cycle on microtubules, while others, such as kinesin-3, exhibit a predominant one-head-bound (1HB) state. An interesting but unclear issue is what factors determine a kinesin motor in the predominant 1HB and 2HB states. Here, on the basis of the general chemomechanical pathway of the kinesin motors, a theory is given on fractions of 1HB and 2HB states.
View Article and Find Full Text PDFKIF1A, a neuron-specific Kinesin-3 motor, is indispensable for long-distance axonal transport and nuclear migration, processes vital for neuronal function. Using MINFLUX tracking, we reveal that KIF1A predominantly adopts a two-heads-bound state, even under ATP-limiting conditions, challenging prior models proposing a one-head-bound rate-limiting step. This two-heads-bound conformation, stabilized by interactions between the positively charged K-loop and negatively charged tubulin tails, enhances microtubule affinity and minimizes detachment.
View Article and Find Full Text PDFNat Commun
July 2024
Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
Mutations in the microtubule-associated motor protein KIF1A lead to severe neurological conditions known as KIF1A-associated neurological disorders (KAND). Despite insights into its molecular mechanism, high-resolution structures of KIF1A-microtubule complexes remain undefined. Here, we present 2.
View Article and Find Full Text PDFMutations in the microtubule-associated motor protein KIF1A lead to severe neurological conditions known as KIF1A-associated neurological disorders (KAND). Despite insights into its molecular mechanism, high-resolution structures of KIF1A-microtubule complexes remain undefined. Here, we present 2.
View Article and Find Full Text PDFNat Commun
June 2021
Department Physiology and Biophysics, Albert Einstein College of Medicine, New York, NY, USA.
KIF14 is a mitotic kinesin whose malfunction is associated with cerebral and renal developmental defects and several cancers. Like other kinesins, KIF14 couples ATP hydrolysis and microtubule binding to the generation of mechanical work, but the coupling mechanism between these processes is still not fully clear. Here we report 20 high-resolution (2.
View Article and Find Full Text PDF