Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: Chronic obstructive pulmonary disease (COPD) affects breathing, speech production, and coughing. We evaluated a machine learning analysis of speech for classifying the disease severity of COPD.
Methods: In this single centre study, non-consecutive COPD patients were prospectively recruited for comparing their speech characteristics during and after an acute COPD exacerbation. We extracted a set of spectral, prosodic, and temporal variability features, which were used as input to a support vector machine (SVM). Our baseline for predicting patient state was an SVM model using self-reported BORG and COPD Assessment Test (CAT) scores.
Results: In 50 COPD patients (52% males, 22% GOLD II, 44% GOLD III, 32% GOLD IV, all patients group E), speech analysis was superior in distinguishing during and after exacerbation status compared to BORG and CAT scores alone by achieving 84% accuracy in prediction. CAT scores correlated with reading rhythm, and BORG scales with stability in articulation. Pulmonary function testing (PFT) correlated with speech pause rate and speech rhythm variability.
Conclusion: Speech analysis may be a viable technology for classifying COPD status, opening up new opportunities for remote disease monitoring.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11761136 | PMC |
http://dx.doi.org/10.2147/COPD.S480842 | DOI Listing |