A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Late-Stage Minimal Labeling of Peptides and Proteins for Real-Time Imaging of Cellular Trafficking. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The cellular uptake routes of peptides and proteins are complex and diverse, often handicapping therapeutic success. Understanding their mechanisms of internalization requires chemical derivatization with approaches that are compatible with wash-free and real-time imaging. In this work, we developed a new late-stage labeling strategy for unprotected peptides and proteins, which retains their biological activity while enabling live-cell imaging of uptake and intracellular trafficking. Benzo-2,1,3-thiadiazoles were selectively incorporated into Cys residues of both linear and cyclic peptides via Pd-mediated arylation with good yields and high purities. The resulting labeled peptides are chemically stable under physiological conditions and display strong fluorogenic character for wash-free imaging studies. We utilized this approach to prepare native-like analogues of cell-penetrating peptides and performed time-course analysis of their internalization routes in live cells by fluorescence lifetime imaging. Furthermore, we applied our strategy to label the chemokine protein mCCL2 and monitor its internalization via receptor-mediated endocytosis in live macrophages. This study provides a straightforward strategy for late-stage fluorogenic labeling of intact peptides and small proteins and direct visualization of dynamic intracellular events.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758221PMC
http://dx.doi.org/10.1021/acscentsci.4c01249DOI Listing

Publication Analysis

Top Keywords

peptides proteins
12
real-time imaging
8
peptides
7
imaging
5
late-stage minimal
4
minimal labeling
4
labeling peptides
4
proteins
4
proteins real-time
4
imaging cellular
4

Similar Publications