A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Fluid flow impacts endothelial-monocyte interactions in a model of vascular inflammatory fibrosis. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The aberrant vascular response associated with tendon injury results in circulating immune cell infiltration and a chronic inflammatory feedback loop leading to poor healing outcomes. Studying this dysregulated tendon repair response in human pathophysiology has been historically challenging due to the reliance on animal models. To address this, our group developed the human tendon-on-a-chip (hToC) to model cellular interactions in the injured tendon microenvironment; however, this model lacked the key element of physiological flow in the vascular compartment. Here, we leveraged the modularity of our platform to create a fluidic hToC that enables the study of circulating immune cell and vascular crosstalk in a tendon injury model. Under physiological shear stress consistent with postcapillary venules, we found a significant increase in the endothelial leukocyte activation marker intercellular adhesion molecule 1 (ICAM-1), as well as enhanced adhesion and transmigration of circulating monocytes across the endothelial barrier. The addition of tissue macrophages to the tendon compartment further increased the degree of circulating monocyte infiltration into the tissue matrix. Our findings demonstrate the importance of adding physiological flow to the human tendon-on-a-chip, and more generally, the significance of flow for modeling immune cell interactions in tissue inflammation and disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763004PMC
http://dx.doi.org/10.1038/s41598-025-85987-zDOI Listing

Publication Analysis

Top Keywords

immune cell
12
tendon injury
8
circulating immune
8
human tendon-on-a-chip
8
physiological flow
8
tendon
5
fluid flow
4
flow impacts
4
impacts endothelial-monocyte
4
endothelial-monocyte interactions
4

Similar Publications