A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Enhancing Polylactic Acid (PLA) Performance: A Review of Additives in Fused Deposition Modelling (FDM) Filaments. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This review explores the impact of various additives on the mechanical properties of polylactic acid (PLA) filaments used in Fused Deposition Modeling (FDM) 3D printing. While PLA is favored for its biodegradability and ease of use, its inherent limitations in strength and heat resistance necessitate enhancements through additives. The impact of natural and synthetic fibers, inorganic particles, and nanomaterials on the mechanical properties, printability, and overall functionality of PLA composites was examined, indicating that fiber reinforcements, such as carbon and glass fibers, significantly enhance tensile strength and stiffness, while natural fibers contribute to sustainability but may compromise mechanical stability. Additionally, the inclusion of inorganic particulate fillers like calcium carbonate improves dimensional stability and printability, although larger particles can lead to agglomeration issues. The study highlights the potential for improved performance in specific applications while acknowledging the need for further investigation into optimal formulations and processing conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768329PMC
http://dx.doi.org/10.3390/polym17020191DOI Listing

Publication Analysis

Top Keywords

polylactic acid
8
acid pla
8
fused deposition
8
mechanical properties
8
enhancing polylactic
4
pla
4
pla performance
4
performance review
4
review additives
4
additives fused
4

Similar Publications