A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Non-Invasive Determination of the Paternal Inheritance in Pregnancies at Risk for β-Thalassaemia by Analyzing Cell-Free Fetal DNA Using Targeted Next-Generation Sequencing. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Non-invasive prenatal testing (NIPT) has been widely adopted for the screening of chromosomal abnormalities; however, its adoption for monogenic disorders, such as β-thalassaemia, has proven challenging. Haemoglobinopathies are the most common monogenic disorders globally, with β-thalassaemia being particularly prevalent in Cyprus. This study introduces a non-invasive prenatal haplotyping (NIPH) assay for β-thalassaemia, utilizing cell-free DNA (cfDNA) from maternal plasma. The assay determines paternal inheritance by analyzing highly heterozygous single-nucleotide variants (SNVs) in the β-globin gene cluster. To identify highly heterozygous SNVs in the population, 96 randomly selected samples were processed using Illumina DNA-prep NGS chemistry. A custom, high-density NGS genotyping panel, named HAPLONID, was designed with 169 SNVs, including 15 common pathogenic ones. The AmpliSeq for Illumina assay was then applied to cfDNA to evaluate the panel's efficiency in performing NIPT for β-thalassaemia. Analysis revealed 219 highly polymorphic SNVs, and the sequencing of 17 families confirmed successful paternal allele determination. The NIPH assay demonstrated 100% success in diagnostic interpretation. This study achieved the advancement of an integrated NGS-NIPT assay for β-thalassaemia, bringing it one step closer to being a diagnostic assay and thereby enabling a reduction in the number of risky invasive prenatal sampling procedures in Cyprus and elsewhere.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11765003PMC
http://dx.doi.org/10.3390/ijms26020570DOI Listing

Publication Analysis

Top Keywords

paternal inheritance
8
non-invasive prenatal
8
monogenic disorders
8
niph assay
8
assay β-thalassaemia
8
highly heterozygous
8
β-thalassaemia
6
assay
6
non-invasive determination
4
determination paternal
4

Similar Publications