Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Shiga toxin-producing (STEC) infections have increased in humans, animals, and the food industry, with ready-to-eat (RTE) food products being particularly susceptible to contamination. The prevalence of multidrug-resistant strains has rendered the current control strategies insufficient to effectively control STEC infections. Herein, we characterized the newly isolated STEC phage vB_ESM-pEJ01, a polyvalent phage capable of infecting and species, and assessed its efficacy in reducing STEC in vitro and food matrices. The phage, belonging to the , exhibits effective bacteriolytic activity, a short latent period, large burst size, and stability under a broad pH range and moderate temperatures. Moreover, the phage demonstrated strong anti-biofilm efficacy even at low concentrations. Genomic analysis revealed that the phage was similar to the well-characterized RB49 phage (T4-like phage) but possesses distinct host-specificity-related genes that potentially contribute to its extensive host range. The efficacy of phage vB_ESM-pEJ01 was evaluated in artificially STEC-inoculated green juice samples, where it significantly reduced STEC and the abundance of Shiga toxin-producing genes at 4 and 25 °C. Therefore, these results suggest that the polyvalent phage vB_ESM-pEJ01 is a promising biocontrol agent for foodborne pathogens in RTE foods such as fresh juices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767321PMC
http://dx.doi.org/10.3390/microorganisms13010103DOI Listing

Publication Analysis

Top Keywords

shiga toxin-producing
12
phage vb_esm-pej01
12
phage
9
green juice
8
stec infections
8
polyvalent phage
8
stec
5
characterization broad
4
broad spectrum
4
spectrum bacteriophage
4

Similar Publications

Enterohemorrhagic (EHEC), a pathotype within the Shiga toxin-producing (STEC) group, is a major etiological agent of severe gastrointestinal illness and life-threatening sequelae, including hemolytic uremic syndrome. Although insights into EHEC pathogenesis have been gained through traditional 2D cell culture systems and animal models, these platforms are limited in their ability to recapitulate human-specific physiological responses and tissue-level interactions. Recent progress in three-dimensional (3D) cell culture systems, such as spheroids, organoids, and organ-on-a-chip (OoC) technologies, has enabled more physiologically relevant models for investigating host-pathogen dynamics.

View Article and Find Full Text PDF

Cattle are a reservoir for the zoonotic human foodborne pathogen Shiga toxin-producing Escherichia coli (STEC), the causative agent of many disease outbreaks associated with contaminated fresh leafy greens. Concentrated animal feeding operations (CAFOs) housing cattle generate fugitive dust, however the potential risk of STEC movement by means of the aerosolized dust is not well known. In this investigation, we used metagenome sequencing of air samples collected in an agricultural setting to investigate airborne transfer of STEC from a large CAFO to the surrounding area.

View Article and Find Full Text PDF

Infections with Shiga toxin (Stx)-producing (STEC) strains can result in a wide range of clinical presentations. Despite STEC O157:H7 being the serotype most frequently associated with hemolytic uremic syndrome (HUS), in some patients, a self-limited gastrointestinal infection is observed. We have previously demonstrated that genetic differences between BALB/c and C57BL/6 mice account for a different outcome after an experimental gastrointestinal STEC O157:H7 infection, in which the better outcome observed in BALB/c mice was associated with a Th-2 biased immune response.

View Article and Find Full Text PDF

Impact of physiological transitions during forward processing on Shiga-toxin producing Escherichia coli risks in lettuce.

Food Microbiol

January 2026

Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI, 48824, USA. Electronic address:

Cold stress during forward processing delays of lettuce can induce the formation of viable but nonculturable (VBNC) cells of Shiga toxin-producing Escherichia coli (STEC) O157:H7 and pose risks of foodborne disease outbreaks. This study investigated the effect of physiological changes during the forward processing cold chain on the risks of illness from consuming lettuce contaminated with STEC O157:H7. A probabilistic quantitative microbial risk assessment model was developed to quantify the risks associated with consuming field-bagged Romaine hearts and shredded and packaged lettuce contaminated with STEC O157:H7.

View Article and Find Full Text PDF