Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: Although higher-generation TKIs are associated with improved progression-free survival in advanced NSCLC patients with EGFR mutations, the optimal selection of TKI treatment remains uncertain. To address this gap, we developed a web application powered by a reinforcement learning (RL) algorithm to assist in guiding initial TKI treatment decisions.
Methods: Clinical and mutational data from advanced NSCLC patients were retrospectively collected from 14 medical centers. Only patients with complete data and sufficient follow-up were included. Multiple supervised machine learning models were tested, with the Extra Trees Classifier (ETC) identified as the most effective for predicting progression-free survival. Feature importance scores were calculated by the ETC, and features were then integrated into a Deep Q-Network (DQN) RL algorithm. The RL model was designed to select optimal TKI generation and a treatment line for each patient and was embedded into an open-source web application for experimental clinical use.
Results: In total, 318 cases of EGFR-mutant advanced NSCLC were analyzed, with a median patient age of 63. A total of 52.2% of patients were female, and 83.3% had ECOG scores of 0 or 1. The top three most influential features identified were neutrophil-to-lymphocyte ratio (log-transformed), age (log-transformed), and the treatment line of TKI administration, as tested by the ETC algorithm, with an area under curve (AUC) value of 0.73, whereas the DQN RL algorithm achieved a higher AUC value of 0.80, assigning distinct Q-values across four TKI treatment categories. This supports the decision-making process in the web-based 'EGFR Mutant NSCLC Treatment Advisory System', where clinicians can input patient-specific data to receive tailored recommendations.
Conclusions: The RL-based web application shows promise in assisting TKI treatment selection for EGFR-mutant advanced NSCLC patients, underscoring the potential for reinforcement learning to enhance decision-making in oncology care.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763509 | PMC |
http://dx.doi.org/10.3390/cancers17020233 | DOI Listing |