98%
921
2 minutes
20
, a recognized probiotic, improves intestinal health in animals, but the mechanism remains unclear. This study investigates the mechanisms by which ZY15, isolated from healthy pig feces, mitigates intestinal barrier damage and inflammation caused by oxidative stress in Enterotoxigenic (ETEC) K88-challenged mice. The results indicated that ZY15 increased antioxidant capacity by reducing serum reactive oxygen species (ROS) and superoxide dismutase (SOD) levels. ZY15 enhanced the intestinal barrier by upregulating mucin 1, mucin 2, , (), and expressions in protein and mRNA levels. It significantly alleviated intestinal inflammation by reducing the proinflammatory cytokines (), (), tumor necrosis factor-α (TNF-α), and interleukin-17 (IL-17) mRNA and protein levels. Notably, ZY15 suppressed intestinal inflammation by inhibiting AKT/mTOR/HIF-1α/RORγt/IL-17 pathway activation. Additionally, it significantly altered the structure of gut microorganisms by enriching and , and thereby re-establishing colonization resistance and alleviating ETEC K88-induced intestinal barrier damage and inflammation in mice. Taken together, our findings reveal the protective mechanism of ZY15 in mice challenged with ETEC K88 by regulating AKT/mTOR/HIF-1α/RORγt/IL-17 signaling and microbial imbalance. Leveraging these properties, live ZY15 offers a promising alternative treatment for -induced diarrhea in weaned piglets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763039 | PMC |
http://dx.doi.org/10.3390/antiox14010058 | DOI Listing |
Arq Gastroenterol
September 2025
The Japanese Society of Internal Medicine, Editorial Department, Tokyo, Japan.
Background: This study aims to analyze research trends and emerging insights into gut microbiota studies from 2015 to 2024 through bibliometric analysis techniques. By examining bibliographic data from the Web of Science (WoS) Core Collection, it seeks to identify key research topics, evolving themes, and significant shifts in gut microbiota research. The study employs co-occurrence analysis, principal component analysis (PCA), and burst detection analysis to uncover latent patterns and the development trajectory of this rapidly expanding field.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
September 2025
Division of Gastroenterology & Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
Chronic diarrhea is a frequent gastrointestinal complication in both type 1 (T1D) and type 2 diabetes (T2D), although the underlying mechanisms differ: T1D is linked to autonomic neuropathy and disrupted transporter regulation, while T2D is often linked to medications and intestinal inflammation. Using streptozotocin-induced mouse models of T1D and T2D, we observed increased luminal fluid in the small intestine of both. Given the role of Na⁺/H⁺ exchanger 3 (NHE3) in fluid absorption and its loss in most diarrheal diseases, we examined NHE3 expression across intestinal segments.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
Center of Drug Safety Evaluation, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
Creating effective treatments for type 2 diabetes mellitus (T2DM) remains a critical global health challenge. This study investigates the antidiabetic mechanisms of subsp. B-53 ( B-53) in T2DM mice.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
Dietary proteins have been demonstrated to alleviate ulcerative colitis. Phosvitin (PSV), a highly phosphorylated protein, possesses biological functions such as anti-inflammatory and antioxidant activities. This study aimed to investigate the preventive effects of PSV on dextran sulfate sodium (DSS)-induced colitis in mice and its underlying mechanisms.
View Article and Find Full Text PDFJ Exp Pharmacol
September 2025
Department of Translational Medicine, University of Ferrara, Ferrara, Italy.
Purpose: Acute graft-versus-host disease (aGVHD) is a significant cause of death in recipients of allogeneic hematopoietic stem cell transplantation. In this type of graft, the intestine is particularly affected, with the loss of intestinal barrier integrity playing a key role in its onset. In this scenario, the aim of the present research was to evaluate defibrotide, a heparin-like compound, marked for severe veno-occlusive disease, as an innovative therapeutic approach for restoring intestinal barrier integrity using an in vitro model and analyzing aGVHD patients' sera and clinical data.
View Article and Find Full Text PDF