Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Liver ultrasound segmentation is challenging due to low image quality and variability. While deep learning (DL) models have been widely applied for medical segmentation, generic pre-configured models may not meet the specific requirements for targeted areas in liver ultrasound. Quantitative ultrasound (QUS) is emerging as a promising tool for liver fat measurement; however, accurately segmenting regions of interest within liver ultrasound images remains a challenge. We introduce a generalizable framework using an adaptive evolutionary genetic algorithm to optimize deep learning models, specifically U-Net, for focused liver segmentation. The algorithm simultaneously adjusts the depth (number of layers) and width (neurons per layer) of the network, dropout, and skip connections. Various architecture configurations are evaluated based on segmentation performance to find the optimal model for liver ultrasound images. The model with a depth of 4 and filter sizes of [16, 64, 128, 256] achieved the highest mean adjusted Dice score of 0.921, outperforming the other configurations, using three-fold cross-validation with early stoppage. Adaptive evolutionary optimization enhances the deep learning architecture for liver ultrasound segmentation. Future work may extend this optimization to other imaging modalities and deep learning architectures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763560 | PMC |
http://dx.doi.org/10.3390/diagnostics15020117 | DOI Listing |