Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: The evolving infant gut microbiome influences host immune development and later health outcomes. Early antibiotic exposure could impact microbiome development and contribute to poor outcomes. Here, we use a prospective longitudinal birth cohort of n = 323 healthy term African American children to determine the association between antibiotic exposure and the gut microbiome through shotgun metagenomics sequencing as well as bile acid profiles through liquid chromatography-mass spectrometry.
Results: Stool samples were collected at ages 4, 12, and 24 months for antibiotic-exposed (n = 170) and unexposed (n = 153) participants. A short-term substudy (n = 39) collected stool samples at first exposure, and over 3 weeks following antibiotics initiation. Antibiotic exposure (predominantly amoxicillin) was associated with minimal microbiome differences, whereas all tested taxa were modified by breastfeeding. In the short-term substudy, we observed microbiome differences only in the first 2 weeks following antibiotics initiation, mainly a decrease in Bifidobacterium bifidum. The differences did not persist a month after antibiotic exposure. Four species were associated with infant age. Antibiotic exposure was not associated with an increase in antibiotic resistance gene abundance or with differences in microbiome-derived fecal bile acid composition.
Conclusions: Short-term and long-term gut microbiome perturbations by antibiotic exposure were detectable but substantially smaller than those associated with breastfeeding and infant age.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11761179 | PMC |
http://dx.doi.org/10.1186/s40168-024-01999-3 | DOI Listing |