Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: Newborn screening (NBS) programs have significantly improved the health and outcomes of patients with inherited metabolic disorders (IMDs). Methods based on liquid chromatography/mass spectrometry (LC-MS/MS) analysis are viewed worldwide as the gold standard procedure for the expanded NBS programs for these disorders. Advanced molecular technologies point to genomic sequencing as an alternative and feasible strategy for the screening of genetic diseases, including IMDs. However, each of the two approaches has potential limitations when used as a first-tier analysis. In this study, we tested a workflow-based parallel biochemical and sequencing analyses to determine whether this approach could improve the diagnostic outcome.
Results: For each patient identified by LC-MS/MS as positive, we performed both the biochemical confirmatory tests and next-generation sequencing (NGS) procedures from the same Dried Blood Spot (DBS). NGS analysis was based on applying Exome Sequencing libraries, limiting the analysis to 105 actionable genes involved in IMDs. This allows overtaking the actual limitations of NBS on DBS, enhancing our capacity to identify variants that can drive a genetic disease. Through this approach, we could reach 100% of cases solved, with 37.9% of cases (41/108) for which the combination of the biochemical and NGS analysis was indispensable for a correct diagnosis. In total, we could identify 17 affected, 34 false positives, 12 individuals referred to us for maternal conditions. In 45 newborns the molecular analysis showed heterozygosity for mutations in one or more of the genes analyzed, with results compatible with the biochemical profile indicative of NBS positivity.
Conclusions: In this study, we validated the performance of the proposed workflow. The advantage of this approach is limiting molecular analysis only to positive newborns and using a restricted panel of 105 genes relevant for the expanded NBS, with a 100% rate of diagnosis and potential reduction of the costs related to NBS procedures and reduced impact on patients and families.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762513 | PMC |
http://dx.doi.org/10.1186/s13023-025-03546-1 | DOI Listing |