A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Identification of Potential Selective PAK4 Inhibitors Through Shape and Protein Conformation Ensemble Screening and Electrostatic-Surface-Matching Optimization. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

P21-activated kinase 4 (PAK4) plays a crucial role in the proliferation and metastasis of various cancers. However, developing selective PAK4 inhibitors remains challenging due to the high homology within the PAK family. Therefore, developing highly selective PAK4 inhibitors is critical to overcoming the limitations of existing inhibitors. We analyzed the structural differences in the binding pockets of PAK1 and PAK4 by combining cross-docking and molecular dynamics simulations to identify key binding regions and unique structural features of PAK4. We then performed screening using shape and protein conformation ensembles, followed by a re-evaluation of the docking results with deep-learning-driven GNINA to identify the candidate molecule, STOCK7S-56165. Based on this, we applied a fragment-replacement strategy under electrostatic-surface-matching conditions to obtain Compd 26. This optimization significantly improved electrostatic interactions and reduced binding energy, highlighting its potential for selectivity. Our findings provide a novel approach for developing selective PAK4 inhibitors and lay the theoretical foundation for future anticancer drug design.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764389PMC
http://dx.doi.org/10.3390/cimb47010029DOI Listing

Publication Analysis

Top Keywords

selective pak4
16
pak4 inhibitors
16
shape protein
8
protein conformation
8
developing selective
8
pak4
7
inhibitors
5
identification potential
4
selective
4
potential selective
4

Similar Publications