Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Multiple sclerosis (MS) is an autoimmune disease of the brain and spinal cord with both inflammatory and neurodegenerative features. Although advances in imaging techniques, particularly magnetic resonance imaging (MRI), have improved the process of diagnosis, its cause is unknown, a cure remains elusive and the evidence base to guide treatment is lacking. Computational techniques like machine learning (ML) have started to be used to understand MS. Published MS MRI-based computational studies can be divided into five categories: automated diagnosis; differentiation between lesion types and/or MS stages; differential diagnosis; monitoring and predicting disease progression; and synthetic MRI dataset generation. Collectively, these approaches show promise in assisting with MS diagnosis, monitoring of disease activity and prediction of future progression, all potentially contributing to disease management. Analysis quality using ML is highly dependent on the dataset size and variability used for training. Wider public access would mean larger datasets for experimentation, resulting in higher-quality analysis, permitting for more conclusive research. This narrative review provides an outline of the fundamentals of MS pathology and pathogenesis, diagnostic techniques and data types in computational analysis, as well as collating literature pertaining to the application of computational techniques to MRI towards developing a better understanding of MS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750376 | PMC |
http://dx.doi.org/10.1098/rsos.241052 | DOI Listing |