A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Machine learning for refining interpretation of magnetic resonance imaging scans in the management of multiple sclerosis: a narrative review. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Multiple sclerosis (MS) is an autoimmune disease of the brain and spinal cord with both inflammatory and neurodegenerative features. Although advances in imaging techniques, particularly magnetic resonance imaging (MRI), have improved the process of diagnosis, its cause is unknown, a cure remains elusive and the evidence base to guide treatment is lacking. Computational techniques like machine learning (ML) have started to be used to understand MS. Published MS MRI-based computational studies can be divided into five categories: automated diagnosis; differentiation between lesion types and/or MS stages; differential diagnosis; monitoring and predicting disease progression; and synthetic MRI dataset generation. Collectively, these approaches show promise in assisting with MS diagnosis, monitoring of disease activity and prediction of future progression, all potentially contributing to disease management. Analysis quality using ML is highly dependent on the dataset size and variability used for training. Wider public access would mean larger datasets for experimentation, resulting in higher-quality analysis, permitting for more conclusive research. This narrative review provides an outline of the fundamentals of MS pathology and pathogenesis, diagnostic techniques and data types in computational analysis, as well as collating literature pertaining to the application of computational techniques to MRI towards developing a better understanding of MS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750376PMC
http://dx.doi.org/10.1098/rsos.241052DOI Listing

Publication Analysis

Top Keywords

machine learning
8
magnetic resonance
8
resonance imaging
8
multiple sclerosis
8
narrative review
8
computational techniques
8
diagnosis monitoring
8
learning refining
4
refining interpretation
4
interpretation magnetic
4

Similar Publications