A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Lifelike and Deformable Lung Phantoms for 4DCT Imaging: A Three-Dimensional Printing Approach. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Respiratory motion phantoms can be used for evaluation of CT imaging technologies such as motion artifact reduction algorithms and deformable image registration. However, current respiratory motion phantoms do not exhibit detailed lung tissue structures and thus do not provide a realistic testing environment. This paper presents PixelPrint, a method for 3D-printing deformable lung phantoms featuring highly realistic internal structures, suitable for a broad range of CT evaluations, optimizations, and research. The phantom in this study was designed with a patient 4DCT as a reference and 3D-printed using an extended version of the PixelPrint method for developing patient-specific CT phantoms. A flexible thermoplastic polyurethane (TPU) 3D-printing material was used, which produced regions with attenuation between -840 and -48 Hounsfield units (HU). A linear compression device was then designed and used to compress the phantom in the superior-inferior (SI) direction, and the phantom was scanned at different compression levels matched to the diaphragm displacements measured on the reference patient 4DCT. Deformable image registration (DIR) was performed, and motion vector fields were obtained for both patient and phantom images. SI displacements of selected features in the lung had mean errors of 0.5 mm difference from the patient, or less than the reconstructed slice thickness. In conclusion, the deformable lung phantom developed in this study exhibits realistic lung structures and deformation characteristics under compression, indicating potential for advancing more lifelike respiratory motion phantoms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751626PMC

Publication Analysis

Top Keywords

deformable lung
12
respiratory motion
12
motion phantoms
12
lung phantoms
8
deformable image
8
image registration
8
pixelprint method
8
patient 4dct
8
lung
6
phantoms
6

Similar Publications