98%
921
2 minutes
20
Background: Intratumoral heterogeneity emerges from accumulating genetic and epigenetic changes during tumorigenesis, which may contribute to therapeutic failure and drug resistance. However, the lack of a quick and convenient approach to determine the intratumoral epigenetic heterogeneity (eITH) limit the application of eITH in clinical settings. Here, we aimed to develop a tool that can evaluate the eITH using the DNA methylation profiles from bulk tumors.
Methods: Genomic DNA of three laser micro-dissected tumor regions, including digestive tract surface, central bulk, and invasive front, was extracted from formalin-fixed paraffin-embedded sections of colorectal cancer patients. The genome-wide methylation profiles were generated with methylation array. The most variable methylated probes were selected to construct a DNA methylation-based heterogeneity (MeHEG) estimation tool that can deconvolve the proportion of each reference tumor region with the support vector machine model-based method. A PCR-based assay for quantitative analysis of DNA methylation (QASM) was developed to specifically determine the methylation status of each CpG in MeHEG assay at single-base resolution to realize fast evaluation of epigenetic heterogeneity.
Results: In the discovery set with 79 patients, the differentially methylated CpGs among the three tumor regions were found. The 7 most representative CpGs were identified and subsequently selected to develop the MeHEG algorithm. We validated its performance of deconvolution of tumor regions in an independent cohort. In addition, we showed the significant association of MeHEG-based epigenetic heterogeneity with the genomic heterogeneity in mutation and copy number variation in our in-house and TCGA cohorts. Besides, we found that the patients with higher MeHEG score had worse disease-free and overall survival outcomes. Finally, we found dynamic change of epigenetic heterogeneity based on MeHEG score in cancer cells under the treatment of therapeutic drugs.
Conclusion: By developing a 7-loci panel using a machine learning approach combined with the QASM assay for PCR-based application, we present a valuable method for evaluating intratumoral heterogeneity. The MeHEG algorithm offers novel insights into tumor heterogeneity from an epigenetic perspective, potentially enriching current knowledge of tumor complexity and providing a new tool for clinical and research applications in cancer biology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756021 | PMC |
http://dx.doi.org/10.1186/s13578-024-01337-y | DOI Listing |
Nat Aging
September 2025
Aging Biomarker Consortium (ABC), Beijing, China.
The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.
View Article and Find Full Text PDFExp Neurobiol
August 2025
Institute of Medical Science, Ajou University School of Medicine, Suwon 16499, Korea.
Neural tumors represent diverse malignancies with distinct molecular profiles and present particular challenges due to the blood-brain barrier, heterogeneous molecular etiology including epigenetic dysregulation, and the affected organ's critical nature. KCC-07, a selective and blood-brain barrier penetrable MBD2 (methyl CpG binding domain protein 2) inhibitor, can suppress tumor development by inducing p53 signaling, proven only in medulloblastoma. Here we demonstrate KCC-07 treatment's application to other neural tumors.
View Article and Find Full Text PDFMol Hum Reprod
September 2025
Department of Obstetrics and Gynecology, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada.
Infertility impacts up to 17.5% of reproductive-aged couples worldwide. To aid in conception, many couples turn to assisted reproductive technology, such as IVF.
View Article and Find Full Text PDFMol Biomed
September 2025
National Key Laboratory of Immunity and Inflammation & Institute of Immunology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China.
Dendritic cells (DCs) play a central role in coordinating immune responses by linking innate and adaptive immunity through their exceptional antigen-presenting capabilities. Recent studies reveal that metabolic reprogramming-especially pathways involving acetyl-coenzyme A (acetyl-CoA)-critically influences DC function in both physiological and pathological contexts. This review consolidates current knowledge on how environmental factors, tumor-derived signals, and intrinsic metabolic pathways collectively regulate DC development, subset differentiation, and functional adaptability.
View Article and Find Full Text PDFNucleic Acids Res
September 2025
Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Shenzhen Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China.
EZH2 catalyzes H3K27me3 and is essential for embryonic development. Although multiple EZH2 variants have been identified, the functional implications and physiological significance of its heterogeneity remain unclear. Here, we revealed that conserved cryptic splice sites generated two EZH2 variants with (EZH2A) or without (EZH2B) a 27-nt region, coding for a 9-aa segment.
View Article and Find Full Text PDF