98%
921
2 minutes
20
Rats (Rattus norvegicus) have been widely utilized as model animals due to their physiological characteristics, making them suitable for surgical and long-term studies. They have played a crucial role in biomedical research, complementing studies conducted in mice. The advent of genome editing technologies has facilitated the generation of genetically modified rat strains, advancing studies in experimental animals. Among these innovations, Cre-driver rat models have emerged as powerful tools for spatiotemporal control of gene expression. However, their development and characterization remain less advanced compared to mouse models. In this study, we developed liver-targeting Cre knock-in rats and reporter knock-in rats to evaluate Cre recombinase expression profiles in different genetic contexts. Our results revealed that insertion orientation and promoter origin significantly influence Cre expression patterns. Notably, forward insertion of the Albumin (Alb) promoter-driven Cre sequence at the ROSA26 locus resulted in ubiquitous Cre expression, while reverse insertion confined Cre expression predominantly to the liver. Interestingly, Cre expression under an endogenous Alb promoter unexpectedly induced expression in non-liver tissues, which may suggest a potential link to the in vivo dynamics of albumin. These findings underscore the importance of rigorous characterization in Cre-based transgenic systems. By elucidating the roles of promoter origin, insertion site, and orientation, our study provides valuable insights for optimizing Cre-driver rat models. These findings pave the way for refining genetic strategies to enhance tissue specificity and reliability in functional genomics and disease modeling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12270594 | PMC |
http://dx.doi.org/10.1538/expanim.24-0174 | DOI Listing |
J Neurosci
September 2025
Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
Layer 6 corticothalamic (L6CT) neurons project to both cortex and thalamus, inducing multiple effects including the modulation of cortical and thalamic firing, and the emergence of high gamma oscillations in the cortical local field potential (LFP). We hypothesize that the high gamma oscillations driven by L6CT neuron activation reflect the dynamic engagement of intracortical and cortico-thalamo-cortical circuits. To test this, we optogenetically activated L6CT neurons in NTSR1-cre mice (both male and female) expressing channelrhodopsin-2 in L6CT neurons.
View Article and Find Full Text PDFPsychopharmacology (Berl)
September 2025
División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, 04510, Mexico.
Rationale: One of the earliest changes associated with Alzheimer's disease (AD) is the loss of catecholaminergic terminals in the cortex and hippocampus originating from the Locus Coeruleus (LC). This decline leads to reduced catecholaminergic neurotransmitters in the hippocampus, affecting synaptic plasticity and spatial memory. However, it is unclear whether restoring catecholaminergic transmission in the terminals from the LC may alleviate the spatial memory deficits associated with AD.
View Article and Find Full Text PDFFASEB J
September 2025
Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Prague, Czech Republic.
Mitochondria in the egg are suggested to be crucial for the onset of new life. However, there is ambiguous knowledge about the necessity for fertilization and early embryonic development. Therefore, we created a conditional Tfam knockout (Tfam; Zp3-Cre) to produce Tfam oocytes for investigation of the mitochondrial abundance in oocytes and early embryos.
View Article and Find Full Text PDFNeuropsychopharmacology
September 2025
Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland.
Chronic treatment with fluoxetine, a widely prescribed selective serotonin reuptake inhibitor (SSRI), is known to promote neural plasticity. The role of fluoxetine in plasticity has been particularly tied to parvalbumin-positive interneurons, a key population of GABAergic neurons that regulate inhibitory tone and network stability. While our previous studies have highlighted fluoxetine-induced plasticity in the visual cortex and hippocampus, its cell-type-specific effects in the prefrontal cortex (PFC) remain unclear.
View Article and Find Full Text PDFPLoS One
September 2025
Children's Health Research Institute, Victoria Research Labs, London, Ontario, Canada.
Loss of actin cytoskeleton control can hinder integral developmental and physiological processes and can be the basis for a subset of developmental defects. SHROOM3 is an actin binding protein, best characterized as being essential for neural tube closure in vertebrates. Shroom3 expression has also been identified in the developing heart, with some associated congenital heart defects.
View Article and Find Full Text PDF