Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The growing impact of large language models (LLMs), such as ChatGPT, prompts questions about the reliability of their application in public health. We compared drug toxicity assessments by GPT-4 for liver, heart, and kidney against expert assessments using US Food and Drug Administration (FDA) drug-labeling documents. Two approaches were assessed: a 'General prompt', mimicking the conversational style used by the general public, and an 'Expert prompt' engineered to represent an approach of an expert. The Expert prompt achieved higher accuracy (64-75%) compared with the General prompt (48-72%), but the overall performance was moderate, indicating that caution is needed when using GPT-4 for public health. To improve reliability, an advanced framework,such as Retrieval Augmented Generation (RAG), might be required to leverage knowledge embedded in GPT-4.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.drudis.2025.104297 | DOI Listing |