Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: To evaluate and compare lung nodules' image quality and radiation dose exposure using photon-counting computed tomography (PC-CT) and conventional energy-integrating detector computed tomography (EID-CT).

Methods: Protocol pre-registration was performed a priori at (https://osf.io/krj5y/). We searched PubMed, Web of Science, Embase, and Cochrane Library for studies until April 10, 2024. Risk of bias was assessed using Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) and QUADAS-C. The imaging modalities were compared with Likert scores of lung nodules and radiation dose exposure (measured in mGy and mS). Certainty of evidence was evaluated using Grading of Recommendations, Assessment, Development, and Evaluations (GRADE).

Results: Thirteen studies were included with 718 patients and 362 lung nodules. PC-CT had a significantly higher image quality score of + 0.45 (CI = 0.12 to 0.79) than the EID-CT. Furthermore, 54.0 % (CI = 21.2 % to 86.8 %) of nodules were qualitatively identified as having better image quality in PC-CT than in EID-CT, while 1.9 % (CI = 0 % to 4.9 %) had lower image quality. In terms of radiation dose exposure, PC-CT showed a 30.4 % (CI = 19.1 % to 41.7 %) reduction in radiation dose exposure compared to EID-CT.

Conclusion: The as low as reasonably achievable (ALARA) principle emphasizes minimizing ionizing radiation exposure whenever possible. PC-CT has become an up-and-coming imaging method for chest, providing enhanced spatial resolution and less radiation exposure. Integrating PC-CT into daily medical practice and lung cancer screening may enhance the visibility of lung nodules and improve diagnostic accuracy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejrad.2024.111859DOI Listing

Publication Analysis

Top Keywords

image quality
20
lung nodules
16
radiation dose
16
dose exposure
16
computed tomography
8
diagnostic accuracy
8
exposure pc-ct
8
radiation exposure
8
quality
6
lung
6

Similar Publications

Clinical Role of the Noninvasive Abdominal Fetal ECG in the Detection and Monitoring of Fetal Tachycardia.

Circ Arrhythm Electrophysiol

September 2025

Department of Congenital Heart Disease, Evelina London Children's Hospital, United Kingdom (S. Chivers, T.V., V.Z., S.M., G.M., W.R., E.R., D.F.A.L., T.G.D., O.I.M., G.K.S., J.M.S.).

Background: Fetal tachycardias can cause adverse fetal outcomes including ventricular dysfunction, hydrops, and fetal demise. Postnatally, ECG is the gold standard, but, in fetal practice, echocardiography is used most frequently to diagnose and monitor fetal arrhythmias. Noninvasive extraction of the fetal ECG (fECG) may provide additional information about the electrophysiological mechanism and monitoring of intermittent arrhythmias.

View Article and Find Full Text PDF

In recent AI-driven disease diagnosis, the success of models has depended mainly on extensive data sets and advanced algorithms. However, creating traditional data sets for rare or emerging diseases presents significant challenges. To address this issue, this study introduces a direct-self-attention Wasserstein generative adversarial network (DSAWGAN) designed to improve diagnostic capabilities in infectious diseases with limited data availability.

View Article and Find Full Text PDF

Few-shot learning for highly accelerated 3D time-of-flight MRA reconstruction.

Magn Reson Med

September 2025

Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.

Purpose: To develop a deep learning-based reconstruction method for highly accelerated 3D time-of-flight MRA (TOF-MRA) that achieves high-quality reconstruction with robust generalization using extremely limited acquired raw data, addressing the challenge of time-consuming acquisition of high-resolution, whole-head angiograms.

Methods: A novel few-shot learning-based reconstruction framework is proposed, featuring a 3D variational network specifically designed for 3D TOF-MRA that is pre-trained on simulated complex-valued, multi-coil raw k-space datasets synthesized from diverse open-source magnitude images and fine-tuned using only two single-slab experimentally acquired datasets. The proposed approach was evaluated against existing methods on acquired retrospectively undersampled in vivo k-space data from five healthy volunteers and on prospectively undersampled data from two additional subjects.

View Article and Find Full Text PDF

Objective: To improve B field homogeneity in prostate MR imaging and spectroscopy using a custom-designed 16-channel external local shim coil array.

Methods: In vivo prostate imaging was performed in seven healthy volunteers (mean age: 40.7 years) without bowel preparation.

View Article and Find Full Text PDF

Purpose: Targeted therapy with lenvatinib is a preferred option for advanced hepatocellular carcinoma, however, predicting its efficacy remains challenging. This study aimed to build a nomogram integrating clinicoradiological indicators and radiomics features to predict the response to lenvatinib in patients with hepatocellular carcinoma.

Methods: This study included 211 patients with hepatocellular carcinoma from two centers, who were allocated into the training (107 patients), internal test (46 patients) and external test set(58 patients).

View Article and Find Full Text PDF