A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Comparative evaluation of ACetic - MEthanol high salt dissociation approach for single-cell transcriptomics of frozen human tissues. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Current dissociation methods for solid tissues in scRNA-seq studies do not guarantee intact single-cell isolation, especially for sensitive and complex human endocrine tissues. Most studies rely on enzymatic dissociation of fresh samples or nuclei isolation from frozen samples. Dissociating whole intact cells from fresh-frozen samples, commonly collected by biobanks, remains a challenge. Here, we utilized the acetic-methanol dissociation approach (ACME) to capture transcriptional profiles of individual cells from fresh-frozen tissue samples. This method combines acetic acid-based dissociation and methanol-based fixation. In our study, we optimized this approach for human endocrine tissue samples for the first time. We incorporated a high-salt washing buffer instead of the standard PBS to stabilize RNA and prevent RNases reactivation during rehydration. We have designated this optimized protocol as ACME HS (ACetic acid-MEthanol High Salt). This technique aims to preserve cell morphology and RNA integrity, minimizing transcriptome changes and providing a more accurate representation of mature mRNA. We compared the ability of enzymatic, ACME HS, and nuclei isolation methods to preserve major cell types, gene expression, and standard quality parameters across 41 tissue samples. Our results demonstrated that ACME HS effectively dissociates and fixes cells, preserving cell morphology and high RNA integrity. This makes ACME HS a valuable alternative for scRNA-seq protocols involving challenging tissues where obtaining a live cell suspension is difficult or disruptive.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11748064PMC
http://dx.doi.org/10.3389/fcell.2024.1469955DOI Listing

Publication Analysis

Top Keywords

tissue samples
12
high salt
8
dissociation approach
8
human endocrine
8
nuclei isolation
8
cells fresh-frozen
8
cell morphology
8
rna integrity
8
samples
6
dissociation
5

Similar Publications