98%
921
2 minutes
20
Lanthanide(III) complexes with two-photon absorbing antennas are attractive for microscopy imaging of live cells because they can be excited in the NIR. We describe the synthesis and luminescence and imaging properties of two Eu complexes, and , with (-carbazolyl)-aryl-alkynyl-picolinamide and (-carbazolyl)-aryl-picolinamide antennas, respectively, conjugated to the TAT cell-penetrating peptides. Contrary to what was previously observed with related Eu complexes with carbazole-based antennas in a mixture of water and organic solvents, these two complexes show very low emission quantum yield (Φ < 0.002) in purely aqueous buffers. A detailed spectroscopic study on reveals that the quantum yield of emission is strongly polarity dependent─the less polar the medium, the higher the quantum yield─and that the emission quenching in water is likely due to a photoinduced electron transfer between the excited carbazole-based antenna and Eu that efficiently competes with the energy transfer process. Nevertheless, shows a significant two-photon cross-section of 100 GM at 750 nm, which is interesting for two-photon microscopy. The live cell imaging properties of and the two other conjugates were investigated. Cytosolic delivery was clearly evidenced in the case of when cells are coincubated with this compound and a nonluminescent dimeric TAT derivative, dFFLIPTAT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.4c04806 | DOI Listing |
Neuropharmacology
September 2025
Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel; Zelman Center for Brain Science Research, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel. Electronic address:
Norepinephrine (NE) is a key neuromodulator in the brain with a wide range of functions. It regulates arousal, attention, and the brain's response to stress, enhancing alertness and prioritizing relevant stimuli. In the auditory domain, NE modulates neural processing and plasticity in the auditory cortex by adjusting excitatory-inhibitory balance, tuning curves, and signal-to-noise ratio.
View Article and Find Full Text PDFSmall
September 2025
Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA.
Adoptive cell transfers (ACTs) can interact specifically with inflamed tissues, but lack a mechanism for transport through viscous biological barriers such as mucus when administered locally. Further, maintaining cell function is challenging due to the loss of cellular phenotypes in diseased microenvironments. In this work, the use of magnetically controlled helical microrobots is examined to transport macrophages through physiologically representative mucus and maintain functional phenotypes through drug elution for improved cell delivery.
View Article and Find Full Text PDFbioRxiv
August 2025
Department of Biomedical Engineering, Johns Hopkins University School of Medicine.
Sound harmonicity is foundational in complex auditory stimuli like music and vocalizations but it remains unclear how such spectrally complex stimuli are processed in the auditory cortex (ACtx). Subregions of the auditory cortex process are thought to process harmonic stimuli differently, and secondary ACtx (A2) layer (L) 2/3 is believed to be the most selective. Selective responses to sound features in ACtx are thought to emerge hierarchically starting from A1 L4.
View Article and Find Full Text PDFNature
September 2025
Department of Physics, University of California, Berkeley, CA, USA.
Trapped-ion applications, such as in quantum information processing, precision measurements, optical clocks and mass spectrometry, rely on specialized high-performance ion traps. The last three of these applications typically use traditional machining to customize macroscopic 3D Paul traps, whereas quantum information processing experiments usually rely on photolithographic techniques to miniaturize the traps and meet scalability requirements. Using photolithography, however, it is challenging to fabricate the complex 3D electrode structures required for optimal confinement.
View Article and Find Full Text PDFEur J Neurosci
September 2025
Department of Radiology, Huaxi MR Research Center (HMRRC), Institute of Radiology and Medical Imaging, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
In Parkinson's disease (PD), blood-brain barrier (BBB) dysfunction is shifting from being viewed as a passive marker of damage to a key pathological driver and potential therapeutic target. Its disruption involves mechanisms such as abnormal α-synuclein transport, tight junction breakdown, inflammatory activation, and vascular remodeling, all of which significantly disturb the neural microenvironment. Imaging technologies are playing an increasingly pivotal role in unraveling these complex processes.
View Article and Find Full Text PDF