98%
921
2 minutes
20
Background: Considering the large diversity of chemicals present in the environment and the need to study their effects (alone or as mixtures), the development of high-throughput in vitro assays in line with the Replacement, Reduction, Refinement (3R) strategy is essential for chemical risk assessments.
Results: We developed a robust analytical workflow based on both low resolution tandem mass spectrometry (MS/MS) and high-resolution mass spectrometry (HRMS) to quantify 13 steroids in NCI-H295R cell culture medium, human plasma and serum. The workflow was validated by screening media from the NCI-H295R cell line exposed in dose-response experiments to 5 endocrine disruptors (EDs) such as bisphenol A, prochloraz, ketoconazole, atrazine and forskolin. Absolute quantifications of the 13 steroids performed on a triple quadrupole (QqQ) MS/MS demonstrated that the performances obtained were in line with OECD recommendations. HRMS (MS1-HRMS) provided measurements nearly as sensitive and as reproducible as those obtained using multiple reaction monitoring (MRM) and ELISA. A bioinformatics workflow, using HRMS, was implemented to detect and annotate disrupted metabolites. HRMS allowed to detect disruptions in pathways associated to fatty acids, purines and amino acids metabolisms after exposure to the EDs tested, in addition to that linked to steroidogenesis.
Significance: We developed a robust MS1-HRMS workflow, from sample preparation to compound quantification or annotation, compatible with absolute steroid quantification, to screen NCI-H295R cell media exposed to potential EDs. Using only 200 μL of medium, the method integrates MS/MS and HRMS analyses, 96-well plate solid-phase extraction for high throughput, and automated pre-annotation for cost efficiency. This optimized workflow identifies EDs in cell assays by detecting disruptions in steroidogenesis and other biological pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2024.343594 | DOI Listing |
Biochem Pharmacol
July 2025
Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China; The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Sichuan-Chongqing Joint K
Hyperaldosteronism, characterized by aldosterone overproduction, increases the risk of renal damage and cardiovascular events. Aldosterone synthase (CYP11B2), the rate-limiting enzyme in aldosterone biosynthesis, has emerged as a promising therapeutic target, but developing selective CYP11B2 inhibitors remains challenging due to its high structural similarity to 11β-hydroxylase (CYP11B1). Indole, a natural heterocyclic compound derived from plants and bacteria, has therapeutic and regulatory effects in inflammation and endocrinology.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France.
Background: Considering the large diversity of chemicals present in the environment and the need to study their effects (alone or as mixtures), the development of high-throughput in vitro assays in line with the Replacement, Reduction, Refinement (3R) strategy is essential for chemical risk assessments.
Results: We developed a robust analytical workflow based on both low resolution tandem mass spectrometry (MS/MS) and high-resolution mass spectrometry (HRMS) to quantify 13 steroids in NCI-H295R cell culture medium, human plasma and serum. The workflow was validated by screening media from the NCI-H295R cell line exposed in dose-response experiments to 5 endocrine disruptors (EDs) such as bisphenol A, prochloraz, ketoconazole, atrazine and forskolin.
Int J Cancer
March 2025
Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
Surgery
January 2025
Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Champaign, IL; Department of Surgery, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Champaign, IL. Electronic address:
Background: Recent multigenomic analysis of adrenocortical carcinomas (ACCs) identified SLC7A11/xCT as a novel biomarker. The Food and Drug Administration-approved anti-inflammatory drug, sulfasalazine (SAS), induces ferroptosis by blocking SLC7A11 expression. We hypothesize that SAS could be repurposed to target ACC cells.
View Article and Find Full Text PDFInt J Mol Sci
August 2024
Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-356 Poznan, Poland.