98%
921
2 minutes
20
The effect of ensiling sorghum grains harvested at different dates on pig nutrient digestibility and fermentability was evaluated using approaches. A sorghum crop was divided following a randomised complete block design and distributed in 3 treatments: 1) grain harvested 113 d after sowing (40% moisture) and ensiled for 180 d (high moisture, HMG), 2) grain harvested 159 d after sowing (15% moisture), rehydrated to 40% moisture and ensiled for 180 d (reconstituted, REC), and 3) sorghum grain harvested 159 d after sowing (15% moisture) and stored dry (dry, DG). Starch content was lower in ensiled grains (HMG and REC) ( = 0.019), and lower for HMG ( = 0.043). The resistant starch fraction was lower ( < 0.001), and the predicted glycaemic index was higher ( = 0.029) in ensiled grains. DM, OM and starch digestibility were greater in ensiled grains ( < 0.001 for all parameters). Ensiled grains had lower gas production [ml/g DM] ( = 0.002), but the rate of gas production [ml/h] was higher ( = 0.025). Finally, ensiled grains had lower butyrate and higher branched-chain fatty acids concentration [mol/L] ( < 0.001 and < 0.003, respectively). The ensiling process improved digestibility and changed fermentation parameters and short-chain fatty acids profile, regardless of DM at harvest.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/1745039X.2024.2441503 | DOI Listing |
PLoS One
September 2025
Department of Science, LLP "Research and Production Enterprise "Innovator", Astana, Kazakhstan.
This study investigates the physicochemical, microbiological, and microstructural changes in soft wheat grain during germination under varying moisture conditions: moderately dry, moist, and wet. Pre-harvest sprouting can severely compromise grain quality and usability; however, understanding germination-induced changes offers insights into potential utilization strategies. Physical parameters-including thousand-kernel weight, test weight, and falling number-showed strong correlation with germination time, decreasing by 8.
View Article and Find Full Text PDFBull Environ Contam Toxicol
September 2025
Pesticide Residue Analysis Laboratory, Department of Entomology, Punjab Agricultural University, Ludhiana, India.
QuEChERS method of extraction followed by detection with Liquid Chromatograph Mass spectrometry was carried out to determine persistence of tetraniliprole and its metabolite in pigeon pea. The mean recovery of tetraniliprole and its metabolite BCS-CQ 63359 in immature and mature pods, seeds and grains of pigeon pea and soil were in the range of 76.38-105.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Crop Protection Division, Indian Council of Agricultural Research (ICAR)- Indian Institute of Wheat and Barley Research, Karnal, Haryana, India.
The rice weevil ( L.) is one of the most destructive pests of stored cereal grains, particularly wheat, leading to considerable post-harvest losses and posing serious threats to global food security and international trade. Rapid and accurate identification of infestations is essential for implementing timely pest management strategies and adhering to phytosanitary regulations.
View Article and Find Full Text PDFSci Technol Adv Mater
June 2025
Institute of Solid State Physics, TU Wien, Wien, Austria.
Full-Heusler compounds represent a rich and diverse class of functional materials, covering a large compositional phase space. Representatives with 24 valence electrons are commonly semimetals or narrow-gap semiconductors as per the Slater-Pauling rule and are thus considered as thermoelectric materials, especially for room-temperature applications. Research on the archetypal thermoelectric full-Heusler compound FeVAl began over two decades ago, and since then, significant progress has been made in enhancing its thermoelectric performance.
View Article and Find Full Text PDFSci Rep
September 2025
Nanomaterials Science Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
The development of environmentally friendly and highly efficient materials is critical for next-generation antibacterial and optoelectronic applications. In this study, we present the successful synthesis of a novel lead-free perovskite, KCsSnICl, via a rapid and scalable chemical bath deposition method at 150 °C for just 5 min. The resulting film features well-defined orthorhombic, pyramid-like crystals with uniform grain sizes (800-1000 nm) and a compact, pinhole-free morphology.
View Article and Find Full Text PDF