Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Oxidative potential (OP) is increasingly recognized as a more health-relevant metric than particulate matter (PM) mass concentration because of its response to varying chemical compositions. Given the limited research on the OP of complex combustion aerosols, the effects of aging processes on their OP remain underexplored. We used online instruments to track the evolution of OP [via dithiothreitol (DTT) assays] during the aging of wood burning and coal combustion emissions by hydroxyl-radical-driven photooxidation and dark ozonolysis. We observed very substantial increases in the intrinsic OP (OP ) of complex combustion aerosols (e.g., OP up to 100 pmol min μg for OH-aged wood burning emissions) within 1 day of equivalent aging. Further analysis in relation to the degree of oxidation revealed a potential for generalizing the OP of carbonaceous aerosols with average carbon oxidation state values ranging from -1.5 to -0.5 by assuming they have a constant OP value of ∼10 ± 6 pmol min μg. Additionally, we uncovered a strong dependency of OP on both the source/precursor and aging pathway with above ∼-0.5. OH photooxidation was identified as an exceptionally efficient pathway for generating highly oxidized, multifunctionalized, and DTT-active products, particularly from wood burning emissions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11736845 | PMC |
http://dx.doi.org/10.1021/acs.estlett.4c00956 | DOI Listing |