98%
921
2 minutes
20
Introduction: Current brain-based visual prostheses pose significant challenges impeding adoption such as the necessarily complex surgeries and occurrence of more substantial side effects due to the sensitivity of the brain. This has led to much effort toward vision restoration being focused on the more approachable part of the brain - the retina. Here we introduce a novel, parameterised simulation platform that enables study of human retinal degeneration and optimization of stimulation strategies. The platform bears immense potential for patient-specific tailoring and serves to enhance artificial vision solutions for individuals with visual impairments.
Material And Method: Our virtual retina is developed using the software package, NEURON. This virtual retina platform supports large-scale simulations of over 10,000 neurons whilst upholding strong biological plausibility with multiple important visual pathways and detailed network properties. The comprehensive three-dimensional model includes photoreceptors, horizontal cells, bipolar cells, amacrine cells, and midget and parasol retinal ganglion cells, with comprehensive network connectivity across various eccentricities (1 mm-5 mm from the fovea) in the human retina. The model is constructed using electrophysiology, immunohistology, and optical coherence tomography imaging data from healthy and degenerate human retinas. We validated our model by replicating numerous experimental observations from human and primate retina, with a particular focus on retinal degeneration.
Result: We simulated interactions between diseased retinas and state-of-the-art retinal implants, shedding light on the limitations of commercial retinal prostheses. Our results suggested that appropriate stimulation settings with intraretinal prototype devices could leverage network-mediated activation to achieve activation mosaics more alike that of the retina's response to natural light, promoting the prospect of more naturalistic vision. Our study additionally highlights the importance of controlling inhibitory circuits in the retinal network to induce functionally relevant retinal activity.
Conclusion: This study demonstrates the potential of this software package and highlights its utility as a valuable tool for engineers, scientists, and clinicians in the design and optimization of retinal stimulation devices for both research and educational applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brs.2025.01.013 | DOI Listing |
Vestn Oftalmol
September 2025
Krasnov Research Institute of Eye Diseases, Moscow, Russia.
Primary open-angle glaucoma (POAG) is characterized by chronic progressive damage to the retinal ganglion cell layer (GCL) and their axons, leading to gradual visual function loss. Currently, the gold standards for structural and functional assessment of the retina in glaucoma are static automated perimetry (SAP) and optical coherence tomography (OCT). However, in clinical practice, data from SAP and OCT may be insufficient to reliably determine the stage of glaucomatous optic neuropathy, monitor its progression, or differentiate it from other causes of visual dysfunction.
View Article and Find Full Text PDFThe introduction of autologous neurosensory retinal transplantation (ANRT) into vitreoretinal surgery has significantly improved the success rates of closure of refractory full-thickness macular holes (FTMH). In recent years, the technique has gained wide acceptance and its indications have expanded; however, certain aspects remain debatable - particularly the optimal graft size to ensure the best anatomical and functional outcomes. To address this issue, the study proposes a surgical technique for treating FTMH using ANRT that involves precise marking of the neurosensory retinal graft.
View Article and Find Full Text PDFVestn Oftalmol
September 2025
Korolev Samara National Research University, Samara, Russia.
Objective: This study evaluated the outcomes of a 36-month follow-up after treatment with the ELLEX 2RT nanosecond laser.
Material And Methods: The study included 72 patients divided into two groups. Group 1 received 2RT nanosecond laser therapy, while group 2 did not undergo laser treatment.
Vestn Oftalmol
September 2025
OOO Prostranstvo intellektual'nykh reshenij, Novorossiysk, Russia.
Unlabelled: Automated analysis of optical coherence tomography (OCT) biomarkers improves the prediction of results of loading anti-VEGF therapy of vascular pigment epithelial detachment (PED) associated with neovascular age-related macular degeneration (nAMD).
Objective: This study evaluated the effectiveness of OCT biomarker analysis algorithm in predicting the anatomical outcomes of loading anti-VEGF therapy for vascular PED in nAMD.
Material And Methods: OCT scans performed prior to loading anti-VEGF therapy were analyzed using the algorithm in 69 treatment-naïve nAMD patients (70 eyes) with vascular PED exceeding 200 µm in height.
Transl Vis Sci Technol
September 2025
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, People's Republic of China.
Purpose: The purpose of this study was to estimate the correlations between macular optical coherence tomography (OCT)-derived metrics and incident glaucoma risk in myopic eyes.
Methods: This longitudinal observational study included 24,181 individuals with myopia (spherical equivalence [SE] ≤ -0.5 diopters [D]) from the UK Biobank study.