A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Colistin treatment causes neuronal loss and cognitive impairment via ros accumulation and neuronal plasticity alterations. | LitMetric

Colistin treatment causes neuronal loss and cognitive impairment via ros accumulation and neuronal plasticity alterations.

Biomed Pharmacother

Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Av. de Joan XXIII, 27-31, Barcelona 08028, Spain; Institut de Neurociències, Universitat de Barcelona (UB), Passeig de la Vall d'Hebron, 171, Barcelo

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The rise of antimicrobial resistance has made necessary the increase of the antibacterial arsenal against multidrug-resistant bacteria. In this context, colistin has re-emerged as a first-line antibiotic in critical situations despite its nephro- and neuro- toxicity at peripheral level. However, the mechanism underlying its toxicity remains unknown, particularly in relation to the central nervous system (CNS). Therefore, this study aimed to characterize the molecular mechanisms underlying colistin-induced neurotoxicity in the CNS through a combination of in vitro and in vivo molecular studies along with several in vivo behavioral tests. Following colistin treatment, mice exhibited a significant reduction in body weight together with renal impairment, and locomotor dysfunction. Moreover, our results demonstrated that colistin disrupted the blood-brain barrier, inducing astrogliosis, and triggering apoptosis-related processes probably through the accumulation of reactive oxygen species (ROS) and mitochondrial dysfunction. Further analysis on mice and primary neuronal cultures revealed that colistin administration altered neuronal plasticity by reducing the number of immature neurons in adult neurogenesis and altering the synaptic function through a reduction of the post-synaptic protein PSD95. All these alterations together finally lead to cognitive impairment and depression-like symptoms in mice. These findings provide novel insights into the mechanisms of colistin-induced neurotoxicity in the CNS, highlighting the need for careful monitoring of cognitive function in patients undergoing colistin treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2025.117839DOI Listing

Publication Analysis

Top Keywords

colistin treatment
12
cognitive impairment
8
neuronal plasticity
8
colistin-induced neurotoxicity
8
neurotoxicity cns
8
colistin
6
neuronal
4
treatment neuronal
4
neuronal loss
4
loss cognitive
4

Similar Publications