98%
921
2 minutes
20
In the burgeoning field of super-resolution fluorescence microscopy, significant efforts are being dedicated to expanding its applications into the 3D domain. Various methodologies have been developed that enable isotropic resolution at the nanometer scale, facilitating the visualization of 3D subcellular structures with unprecedented clarity. Central to this progress is the need for reliable 3D structures that are biologically compatible for validating resolution capabilities. Choosing the optimal standard poses a considerable challenge, necessitating, among other attributes, precisely defined geometry and the capability for specific labeling at sub-diffraction-limit distances. In this context, the use of the non-human-infecting virus, bacteriophage T4 is introduced as an effective and straightforward bio-ruler for 3D super-resolution imaging. Employing DNA point accumulation for imaging in nanoscale topography (DNA-PAINT) along with the technique of astigmatic imaging, the icosahedral capsid of the bacteriophage T4, measuring 120 nm in length and 86 nm in width, and its hollow viral tail is uncovered. This level of detail in light microscopy represents a significant advancement in T4 imaging. A simple protocol for the production and preparation of samples is further outlined. Moreover, the extensive potential of bacteriophage T4 as a multifaceted 3D bio-ruler, proposing its application as a novel benchmark for 3D super-resolution imaging in biological studies is explored.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11937993 | PMC |
http://dx.doi.org/10.1002/adma.202403365 | DOI Listing |
Methods Appl Fluoresc
September 2025
Department of Biotechnology and Biophysics, University of Würzburg, Department of Biotechnology & Biophysics, Wuerzburg University, Am Hubland, Wuerzburg, other, 97074, GERMANY.
Super-resolution microscopy (SRM) has revolutionized fluorescence imaging enabling insights into the molecular organization of cells that were previously unconceivable. Latest developments now allow the visualization of individual molecules with nanometer precision and imaging with molecular resolution. However, translating these achievements to imaging under physiological conditions in cells remains challenging.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai, 200444, China.
Self-assembled DNA nanostructures have been popularly used to develop DNA-based electrochemical sensors by exploiting the nanoscale positioning capability of DNA origami. However, the impact of the electric field on the structural stability of the DNA origami framework and the activity of carried DNA probes remains to be explored. Herein, we employ DNA origami as structural frameworks for reversible DNA hybridization, and develop a single-molecule fluorescence imaging method to quantify electric field effects on DNA conformation and hybridization properties at the single-molecule level.
View Article and Find Full Text PDFPhotochem Photobiol Sci
September 2025
Faculity of Engineering, Yokohama National University, 79-5, Tokiwadai, Hodogaya, Yokohama, Kanagawa, 240-8501, Japan.
In recent years, fluorescence-switchable molecules have garnered significant attention as fluorescent dyes for super-resolution fluorescence microscopy, which is increasingly demanded in the field of biochemical imaging. Among such molecules, diarylethene-S,S,S',S'-tetraoxide derivatives have proven particularly promising due to their ability to achieve high contrast fluorescence switching. Diarylethenes incorporating perfluorocyclopentene as the ethene bridge have become the standard scaffold due to their excellent fatigue resistance and thermal stability.
View Article and Find Full Text PDFJ Adv Res
September 2025
State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology at Beijing, Beijing 100083, China. Electronic address:
Introduction: Accurate characterization of multi-size fractures in coal is crucial for estimating its transport properties. However, the extraction of narrow microfractures in 3D voxel-type CT images is difficult, which causes the loss of connectivity in the extracted fracture network and reduces the accuracy of the predicted transport properties.
Objectives: Improving the image quality and optimizing the segmentation process to deal with the inaccuracy of fracture extraction from coal CT images.
Ultrasonics
August 2025
College of Biomedical Engineering, Fudan University, Shanghai 200438, China; State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai 200438, China; Poda Medical Technology Co., Ltd., Shanghai 200433, China. Electronic address:
Transcranial ultrasound localization microscopy (t-ULM) is faced with challenges posed by the skull, including acoustic attenuation and phase aberrations. There is a significant request for an efficient aberration correction method achieving a great balance between computational complexity and accuracy. In this study, the ray theory is first applied to in-vivo transcranial imaging to calculate the traveltime table in the inhomogeneous medium model of the imaging region.
View Article and Find Full Text PDF