98%
921
2 minutes
20
Background: Integrating algorithm-based clinical decision support (CDS) systems poses significant challenges in evaluating their actual clinical value. Such CDS systems are traditionally assessed via controlled but resource-intensive clinical trials.
Objective: This paper presents a review protocol for preimplementation in silico evaluation methods to enable broadened impact analysis under simulated environments before clinical trials.
Methods: We propose a scoping review protocol that follows an enhanced Arksey and O'Malley framework and PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews) guidelines to investigate the scope and research gaps in the in silico evaluation of algorithm-based CDS models-specifically CDS decision-making end points and objectives, evaluation metrics used, and simulation paradigms used to assess potential impacts. The databases searched are PubMed, Embase, CINAHL, PsycINFO, Cochrane, IEEEXplore, Web of Science, and arXiv. A 2-stage screening process identified pertinent articles. The information extracted from articles was iteratively refined. The review will use thematic, trend, and descriptive analyses to meet scoping aims.
Results: We conducted an automated search of the databases above in May 2023, with most title and abstract screenings completed by November 2023 and full-text screening extended from December 2023 to May 2024. Concurrent charting and full-text analysis were carried out, with the final analysis and manuscript preparation set for completion in July 2024. Publication of the review results is targeted from July 2024 to February 2025. As of April 2024, a total of 21 articles have been selected following a 2-stage screening process; these will proceed to data extraction and analysis.
Conclusions: We refined our data extraction strategy through a collaborative, multidisciplinary approach, planning to analyze results using thematic analyses to identify approaches to in silico evaluation. Anticipated findings aim to contribute to developing a unified in silico evaluation framework adaptable to various clinical workflows, detailing clinical decision-making characteristics, impact measures, and reusability of methods. The study's findings will be published and presented in forums combining artificial intelligence and machine learning, clinical decision-making, and health technology impact analysis. Ultimately, we aim to bridge the development-deployment gap through in silico evaluation-based potential impact assessments.
International Registered Report Identifier (irrid): DERR1-10.2196/63875.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11783031 | PMC |
http://dx.doi.org/10.2196/63875 | DOI Listing |
Comput Biol Med
September 2025
INSIGNEO Institute for in silico medicine, University of Sheffield, UK; School of Mechanical, Aerospace and Civil Engineering, University of Sheffield, UK. Electronic address:
Modelling cardiovascular disease is at the forefront of efforts to use computational tools to assist in the analysis and forecasting of an individual's state of health. To build trust in such tools, it is crucial to understand how different approaches perform when applied to a nominally identical scenario, both singularly and across a population. To examine such differences, we have studied the flow in aneurysms located on the internal carotid artery and middle cerebral artery using the commercial solver Ansys CFX and the open-source code HemeLB.
View Article and Find Full Text PDFJ AOAC Int
September 2025
Analytical Development Division, Senores Pharmaceuticals, Ahmedabad, India.
Background: Molnupiravir, an FDA-approved antiviral for the treatment of COVID-19, requires reliable analytical methods to ensure its quality and safety due to its therapeutic importance.
Objectives: This study presents the development of a stability-indicating RP-HPLC method for estimating molnupiravir-related impurities in capsule formulations. An unknown impurity is structurally elucidated using LC-TQ/MS and 1H and 1³C NMR spectroscopy.
Naunyn Schmiedebergs Arch Pharmacol
September 2025
Department of Pharmacology, Acharya & BM Reddy College of Pharmacy, Acharya Dr. Sarvepalli Radhakrishna Road, Achit Nagar (Post), Soldevanahalli, Bengaluru, 560107, India.
This study aimed to synthesize and evaluate the anticancer activity of novel chalcone derivative against colon cancer by in vitro cytotoxicity against HCT-116 (Research Resource Identifiers:CVCL_D4JB) cell line and in vivo using EAC (Research Resource Identifiers: CVCL_1306) and DLA (Research Resource Identifiers: CVCL_VR37) cells inoculated Swiss albino mice. The present study aimed to synthesize the new chalcone derivatives and conduct its anti-colon cancer activity both in vitro and in vivo. The designed compounds were subjected to in silico studies like binding pocket analysis, molecular docking, and ADME studies.
View Article and Find Full Text PDFRSC Adv
September 2025
Department of Chemistry, Central University of Karnataka Kalaburagi-585 367 Karnataka India.
This research work details the use of a molecular hybridization technique to create a library of four series of hydrazineyl-linked imidazo[1,2-]pyrimidine-thiazole derivatives. The structure of one of the final products, K2, was validated using single-crystal X-ray diffraction. Twenty-six novel hybrid molecules (K1-K26) were synthesized and tested for activity against the H37Rv strain.
View Article and Find Full Text PDFChem Sci
September 2025
Molecular AI, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca Gothenburg Sweden
Incorporating non-natural amino acids (NNAAs) into peptides enhances therapeutic properties, including binding affinity, metabolic stability, and half-life time. The pursuit of novel NNAAs for improved peptide designs faces the challenge of effective synthesis of these building blocks as well as the entire peptide itself. Solid-Phase Peptide Synthesis (SPPS) is an essential technology for the automated assembly of peptides with NNAAs, necessitating careful protection for effective coupling of amino acids in the peptide chain.
View Article and Find Full Text PDF