A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Seamless augmented reality integration in arthroscopy: a pipeline for articular reconstruction and guidance. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Arthroscopy is a minimally invasive surgical procedure used to diagnose and treat joint problems. The clinical workflow of arthroscopy typically involves inserting an arthroscope into the joint through a small incision, during which surgeons navigate and operate largely by relying on their visual assessment through the arthroscope. However, the arthroscope's restricted field of view and lack of depth perception pose challenges in navigating complex articular structures and achieving surgical precision during procedures. Aiming at enhancing intraoperative awareness, a robust pipeline that incorporates simultaneous localization and mapping, depth estimation, and 3D Gaussian splatting (3D GS) is presented to realistically reconstruct intra-articular structures solely based on monocular arthroscope video. Extending 3D reconstruction to augmented reality (AR) applications, the solution offers AR assistance for articular notch measurement and annotation anchoring in a human-in-the-loop manner. Compared to traditional structure-from-motion and neural radiance field-based methods, the pipeline achieves dense 3D reconstruction and competitive rendering fidelity with explicit 3D representation in 7 min on average. When evaluated on four phantom datasets, our method achieves root-mean-square-error reconstruction error, peak signal-to-noise ratio and structure similarity index measure on average. Because the pipeline enables AR reconstruction and guidance directly from monocular arthroscopy without any additional data and/or hardware, the solution may hold the potential for enhancing intraoperative awareness and facilitating surgical precision in arthroscopy. The AR measurement tool achieves accuracy within and the AR annotation tool achieves a mIoU of 0.721.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730702PMC
http://dx.doi.org/10.1049/htl2.12119DOI Listing

Publication Analysis

Top Keywords

augmented reality
8
reconstruction guidance
8
surgical precision
8
enhancing intraoperative
8
intraoperative awareness
8
tool achieves
8
arthroscopy
5
reconstruction
5
seamless augmented
4
reality integration
4

Similar Publications