Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Integrating multi-omics data may help researchers understand the genetic underpinnings of complex traits and diseases. However, the best ways to integrate multi-omics data and use them to address pressing scientific questions remain a challenge. One important and topical problem is how to assess the aggregate effect of multiple genomic data types (e.g. genotypes and gene expression levels) on a phenotype, particularly while accommodating routine issues, such as having related subjects' data in analyses. In this paper, we extend an existing composite kernel machine regression model to integrate two multi-omics data types, while accommodating for general correlation structures amongst outcomes. Due to the kernel machine regression framework, our methods allow for the integration of high-dimensional omics data with small, nonlinear, and interactive effects, and accommodation of general study designs. Here, we focus on scientific questions that aim to assess the association between a functional grouping (such as a gene or a pathway) and a quantitative trait of interest. We use a kernel machine regression to integrate the two multi-omics data types, as they may relate to the trait, and perform a global test of association. We demonstrate the advantage of this approach over single data type association tests via simulation. Finally, we apply this method to a large, multi-ethnic data set to investigate how predicted gene expression and rare genetic variation may be related to two platelet traits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/gepi.22610 | DOI Listing |