A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Alterations in cardiac function correlate with a disruption in fatty acid metabolism in a mouse model of SMA. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Spinal Muscular Atrophy is an autosomal dominant disease caused by mutations and deletions within the SMN1 gene, with predominantly childhood onset. Although primarily a motor neuron disease, defects in non-neuronal tissues are described in both patients and mouse models. Here, we have undertaken a detailed study of the heart in the Smn2B/- mouse models of SMA, and reveal a thinning of the ventriclar walls as previously described in more severe mouse models of SMA. However most structural changes are resolved by accounting for the smaller body size of the SMA mouse, as was also confirmed in the SMN∆7 model. Echocardiography revealed increased systolic function, which was particularly pronounced in subsets of mice and an increase in global longitudinal strain, collectively indicative of increased cardiac stress in the Smn2B/- mouse model. We have used TMT proteomics to perform a longitudinal study of the proteome of the hearts of Smn2B/- mice and reveal a progressive dysregulation of LXR/RXR signalling which is a regulator of lipid metabolism. We further show consistent perturbations in lipid metabolism in the Smn2B/-, Smn-/-;SMN2;SmnΔ7and SmnΔ7/Δ7;SMN2 mouse models of SMA on the day of birth. This work indicates that although structural changes in the heart can be overstated by failing to account for body size, there are functional defects which could predispose the heart to subsequent failure. We identify a common molecular signature across mouse models pointing to a dysregulation in lipid metabolism, and suggest that manipulation of LXR/RXR signalling offers an opportunity to impact upon these pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11891873PMC
http://dx.doi.org/10.1093/hmg/ddaf006DOI Listing

Publication Analysis

Top Keywords

mouse models
20
models sma
12
lipid metabolism
12
mouse
8
mouse model
8
smn2b/- mouse
8
structural changes
8
body size
8
lxr/rxr signalling
8
sma
5

Similar Publications