Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
African mole-rats (Bathyergidae, Rodentia) are subterranean rodents that live in extensive dark underground tunnel systems and rarely emerge aboveground. They can discriminate between light and dark but show no overt visually driven behaviours except for light-avoidance responses. Their eyes and central visual system are strongly reduced but not degenerated. Here, we focus on retinal ganglion cells (RGCs). Sighted mammals have numerous RGC types with distinct morphological and functional properties that encode different aspects of a visual scene. We analysed the morphological diversity of 216 intracellularly dye-injected RGCs in the giant mole-rat () and 48 RGCs in Ansell's mole-rat (). Using a hierarchical cluster analysis on 11 morphological parameters, we show that both species possess at least five RGC types with distinct dendritic field sizes and branching patterns. These resemble some RGC types of the mouse and rat, but mole-rat RGCs feature overall sparser and more asymmetric branching patterns. The dendritic trees of most RGCs in all clusters are monostratified in the inner plexiform layer, but bistratified and multistratified/diffuse cells also exist. Thus, although RGC morphologies have become disorganized, the basic retinal organization principle of parallel information processing by distinct RGC types is retained.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11732417 | PMC |
http://dx.doi.org/10.1098/rspb.2024.2586 | DOI Listing |