A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

3D printing of different fibres towards HA/PCL scaffolding induces macrophage polarization and promotes osteogenic differentiation of BMSCs. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

With the rise of bone tissue engineering (BET), 3D-printed HA/PCL scaffolds for bone defect repair have been extensively studied. However, little research has been conducted on the differences in osteogenic induction and regulation of macrophage (MPs) polarisation properties of HA/PCL scaffolds with different fibre orientations. Here, we applied 3D printing technology to prepare three sets of HA/PCL scaffolds with different fibre orientations (0-90, 0-90-135, and 0-90-45) to study the differences in physicochemical properties and to investigate the response effects of MPs and bone marrow mesenchymal stem cells (BMSCs) on scaffolds with different fibre orientations. The results showed that multi-angle staggered fibres affected the overall porosity and compressive strength of the scaffolds. Compared with the other two groups, the 0-90-45 scaffold induced osteogenic differentiation of BMSCs more significantly, while promoting the polarisation of MPs towards the M2 phenotype to form an osteogenic-friendly immune microenvironment. Unexpectedly, the 0-90-45 scaffold significantly upregulated the expression of angiogenic genes (PDGF, VEGF). Therefore, we conclude that the multi-angle interlaced fibres better mimic the physiological structure of cancellous bone, and that the excellent biomimetic properties reflect the best in vitro osteogenic, immunomodulatory and angiogenic effects. In conclusion, this study is a step forward in the exploration of BET scaffolds and provides a very promising bone filling material.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729943PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0314150PLOS

Publication Analysis

Top Keywords

ha/pcl scaffolds
12
scaffolds fibre
12
fibre orientations
12
osteogenic differentiation
8
differentiation bmscs
8
0-90-45 scaffold
8
scaffolds
6
bone
5
printing fibres
4
ha/pcl
4

Similar Publications