A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Pathological roles of ubiquitination and deubiquitination systems in sepsis-induced myocardial dysfunction. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Sepsis-induced myocardial dysfunction (SIMD) is a severe complication of sepsis, characterized by impaired cardiac function and high mortality rates. Despite significant advances in understanding sepsis pathophysiology, the molecular mechanisms underlying SIMD remain incompletely elucidated. Ubiquitination and deubiquitination, critical post-translational modifications (PTMs) regulating protein stability, localization, and activity, play pivotal roles in cellular processes, such as inflammation, apoptosis, mitochondrial function, and calcium handling. Dysregulation of these systems has been increasingly implicated in the pathogenesis of SIMD. This review provides a comprehensive overview of the pathological mechanisms driving SIMD, with a focus on the classification and functions of E3 ubiquitin ligases and deubiquitinating enzymes (DUBs), their regulatory systems, and their involvement in SIMD. Dysfunction of the ubiquitin-proteasome system (UPS), often driven by altered activity of E3 ligases, accelerates the degradation of critical regulatory proteins, thereby exacerbating cardiac inflammation, oxidative stress, and apoptosis. Concurrently, imbalances in DUB activity disrupt protein homeostasis, further amplifying myocardial injury. Emerging research underscores the therapeutic potential of targeting these systems. Strategies aimed at modulating E3 ligase activity or restoring DUB balance have shown promise in preclinical studies. This review summarizes current findings on the roles of ubiquitination and deubiquitination in SIMD pathogenesis, highlights the key challenges in advancing this field, and proposes directions for future research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12097394PMC
http://dx.doi.org/10.17305/bb.2024.11738DOI Listing

Publication Analysis

Top Keywords

ubiquitination deubiquitination
12
roles ubiquitination
8
sepsis-induced myocardial
8
myocardial dysfunction
8
simd
6
pathological roles
4
systems
4
deubiquitination systems
4
systems sepsis-induced
4
dysfunction sepsis-induced
4

Similar Publications