A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Microporous carbon derived from waste plastics for efficient adsorption of tetracycline: Adsorption mechanism and application potentials. | LitMetric

Microporous carbon derived from waste plastics for efficient adsorption of tetracycline: Adsorption mechanism and application potentials.

Environ Res

MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In recent years, the accumulation of waste plastics and emergence plastic-derived pollutants such as microplastics have driven significantly the development and updating of waste plastic utilization technology. This study prepared the porous carbon (PC-1-KOH) material directly from polyethylene terephthalate (PET) in waste plastic bottles using KOH activation and molten salt strategy for efficient removal of antibiotic tetracycline (TC). The maximum removal efficiency of TC was 100.0% with a PC-1-KOH weight of 20 mg. In addition, the TC removal efficiency stayed over 80.0% within the rage of pH of 3-9 and different water bodies. The adsorption process was described by the Pseudo-second-order kinetic model and the Langmuir isotherm, suggesting that the adsorption of TC was predominantly chemical in nature and occurred on a homogeneous surface. The pores filling, hydrogen bonding, π-π stacking interactions and electrostatic interaction are the main mechanisms of TC adsorption. This work demonstrates a sustainable approach to converting plastic waste derived materials into functional materials for effective pollution removal and environmental remediation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2025.120785DOI Listing

Publication Analysis

Top Keywords

waste plastics
8
waste plastic
8
removal efficiency
8
waste
5
adsorption
5
microporous carbon
4
carbon derived
4
derived waste
4
plastics efficient
4
efficient adsorption
4

Similar Publications