A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Integrating machine learning and nano-QSAR models to predict the oxidative stress potential caused by single and mixed carbon nanomaterials in algal cells. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In silico methods are increasingly important in predicting the ecotoxicity of engineered nanomaterials (ENMs), encompassing both individual and mixture toxicity predictions. It is widely recognized that ENMs trigger oxidative stress effects by generating intracellular reactive oxygen species (ROS), serving as a key mechanism in their cytotoxicity studies. However, existing in silico methods still face significant challenges in predicting the oxidative stress effects induced by ENMs. Herein, we utilized laboratory-derived toxicity data and machine learning methods to develop quantitative nanostructure-activity relationship (nano-QSAR) classification and regression models, aiming to predict the oxidative stress effects of five carbon nanomaterials (fullerene, graphene, graphene oxide, single-walled carbon nanotubes, and multi-walled carbon nanotubes) and their binary mixtures on Scenedesmus obliquus cells. We constructed five nano-QSAR classification models by combining zeta potential (ζP) with the C4.5 decision tree, support vector machine, artificial neural network, naive Bayes, and K-nearest neighbor algorithms. Moreover, we constructed three classification models by integrating the features including ζP, hydrodynamic diameter (DH), and specific surface area (SSA) with the logistic regression, random forest, and Adaboost algorithms. The Accuracy, Recall, Precision and harmonic mean of Precision and Recall (F1-score) values of these models were all higher than 0.600, indicating an excellent performance in distinguishing whether CNMs have the potential to generate ROS. In addition, using the ζP, DH, and SSA descriptors, we combined decision tree regression, random forest regression, gradient boosting, and the Adaboost algorithm, and successfully constructed four nano-QSAR regression models with applicable application domains (all training and testing data points lie within 95% confidence intervals), goodness-of-fit (Rtrain2 ≥ 0.850), and robustness (cross-validation R2 ≥ 0.650) as well as predictive power (Rtest2 ≥ 0.610). The method developed would establish a fundamental basis for more precise evaluations of ecological risks posed by these materials from a mechanistic standpoint.

Download full-text PDF

Source
http://dx.doi.org/10.1093/etojnl/vgae049DOI Listing

Publication Analysis

Top Keywords

oxidative stress
16
stress effects
12
machine learning
8
predict oxidative
8
carbon nanomaterials
8
silico methods
8
nano-qsar classification
8
regression models
8
carbon nanotubes
8
constructed nano-qsar
8

Similar Publications