A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

EdgeNet: An End-to-End Deep Neural Network Pretrained with Synthetic Data for a Real-World Autonomous Driving Application. | LitMetric

EdgeNet: An End-to-End Deep Neural Network Pretrained with Synthetic Data for a Real-World Autonomous Driving Application.

Sensors (Basel)

División de Sistemas e Ingeniería Electrónica (DSIE), Campus Muralla del Mar, s/n, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain.

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This paper presents a novel end-to-end architecture based on edge detection for autonomous driving. The architecture has been designed to bridge the domain gap between synthetic and real-world images for end-to-end autonomous driving applications and includes custom edge detection layers before the Efficient Net convolutional module. To train the architecture, RGB and depth images were used together with inertial data as inputs to predict the driving speed and steering wheel angle. To pretrain the architecture, a synthetic multimodal dataset for autonomous driving applications was created. The dataset includes driving data from 100 diverse weather and traffic scenarios, gathered from multiple sensors including cameras and an IMU as well as from vehicle control variables. The results show that including edge detection layers in the architecture improves performance for transfer learning when using synthetic and real-world data. In addition, pretraining with synthetic data reduces training time and enhances model performance when using real-world data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11723372PMC
http://dx.doi.org/10.3390/s25010089DOI Listing

Publication Analysis

Top Keywords

autonomous driving
16
edge detection
12
synthetic data
8
synthetic real-world
8
driving applications
8
detection layers
8
real-world data
8
data
6
driving
6
synthetic
5

Similar Publications