A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Optimising β-Ti21S Alloy Lattice Structures for Enhanced Femoral Implants: A Study on Mechanical and Biological Performance. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The metastable β-Ti21S alloy exhibits a lower elastic modulus than Ti-6Al-4V ELI while maintaining high mechanical strength and ductility. To address stress shielding, this study explores the integration of lattice structures within prosthetics, which is made possible through additive manufacturing. Continuous adhesion between the implant and bone is essential; therefore, auxetic bow-tie structures with a negative Poisson's ratio are proposed for regions under tensile stress, while Triply Periodic Minimal Surface (TPMS) structures with a positive Poisson's ratio are recommended for areas under compressive stress. This research examines the manufacturability and quasi-static mechanical behaviour of two auxetic bow-tie (AUX 2.5 and AUX 3.5) and two TPMS structures (TPMS 2.5 and TPMS 1.5) in β-Ti21S alloy produced via laser powder bed fusion. Micro-CT reveals printability issues in TPMS 1.5, affecting pore size and reducing fatigue resistance compared to TPMS 2.5. AUX 3.5's low stiffness matches cancellous bone but shows insufficient yield strength and fatigue resistance for femoral implants. Biological tests confirm non-toxicity and enhanced cell activity in β-Ti21S structures. The study concludes that the β-Ti21S alloy, especially with TPMS 2.5 structures, demonstrates promising mechanical and biological properties for femoral implants. However, challenges like poor printability in TPMS 1.5 are acknowledged and should be addressed in future research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11722399PMC
http://dx.doi.org/10.3390/ma18010170DOI Listing

Publication Analysis

Top Keywords

β-ti21s alloy
16
femoral implants
12
tpms structures
12
lattice structures
8
mechanical biological
8
auxetic bow-tie
8
poisson's ratio
8
tpms
8
fatigue resistance
8
structures
7

Similar Publications