A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Nanosized κ-Carbide and B2 Boosting Strength Without Sacrificing Ductility in a Low-Density Fe-32Mn-11Al Steel. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

High-performance lightweight materials are urgently needed because of energy savings and emission reduction. Here, we design a new steel with a low density of 6.41 g/cm, which is a 20% weight reduction compared to the conventional steel. The mechanical properties and microstructures of the steels prepared with different routes are systematically explored by utilizing uniaxial tensile testing and transmission electron microscopy. The steel processed by cold rolling and recrystallization annealing at 950 °C for 15 min shows an ultra-high yield strength of 1241 ± 10 MPa, while retaining a good ductility of 38 ± 1%. The high yield strength is mainly related to the synergistic precipitation strengthening introduced by nanoscale B2 and κ'-carbides. It is encouraging to notice that the yield strength increased without scarifying ductility, compared to the ST steel. The key reason is that the high strain hardening rate is activated by combined factors, including the blockage of numerous twins and nanoscale B2 to the dislocation movements, and dynamic slip band refinement. This study is instructive for concurrently enhancing the strength and ductility of austenitic lightweight steels with fully recrystallized grains and dual nano-precipitates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11722851PMC
http://dx.doi.org/10.3390/nano15010048DOI Listing

Publication Analysis

Top Keywords

yield strength
12
strength
5
steel
5
nanosized κ-carbide
4
κ-carbide boosting
4
boosting strength
4
strength sacrificing
4
ductility
4
sacrificing ductility
4
ductility low-density
4

Similar Publications