98%
921
2 minutes
20
Oligonucleotide therapeutics, including antisense oligonucleotides and small interfering RNA, offer promising avenues for modulating the expression of disease-associated proteins. However, challenges such as nuclease degradation, poor cellular uptake, and unspecific targeting hinder their application. To overcome these obstacles, spherical nucleic acids have emerged as versatile tools for nucleic acid delivery in biomedical applications. Our laboratory has introduced sequence-defined DNA amphiphiles which self-assemble in aqueous solutions. Despite their advantages, self-assembled SNAs can be inherently fragile due to their reliance on non-covalent interactions and fall apart in biologically relevant conditions, specifically by interaction with serum proteins. Herein, this challenge is addressed by introducing two methods of covalent crosslinking of SNAs via UV irradiation. Thymine photodimerization or disulfide crosslinking at the micellar interface enhance SNA stability against human serum albumin binding. This enhanced stability, particularly for disulfide crosslinked SNAs, leads to increased cellular uptake. Furthermore, this crosslinking results in sustained activity and accessibility for release of the therapeutic nucleic acid, along with improvement in unaided gene silencing. The findings demonstrate the efficient stabilization of SNAs through UV crosslinking, influencing their cellular uptake, therapeutic release, and ultimately, gene silencing activity. These studies offer promising avenues for further optimization and exploration of pre-clinical, in vivo studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11840461 | PMC |
http://dx.doi.org/10.1002/smll.202407742 | DOI Listing |
Breast Cancer Res Treat
September 2025
Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.
Purpose: Black women with hormone receptor-positive (HR +) breast cancer are twice as likely as White women to have weakly HR + tumors (1-10% positive cells). Patients with weakly HR + tumors are less frequently prescribed ET and have 60% higher mortality than strongly HR + tumors (> 10% positive cells). We evaluated factors associated with ET prescription and self-reported use among Black women with HR + breast cancer.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
September 2025
Department of PET-CT/MRI, NHC Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China.
Objective: CXCR4 and integrin αβ play important roles in tumor biology and are highly expressed in multiple types of tumors. This study aimed to synthesize, preclinically evaluate, and clinically validate a novel dual-targeted PET imaging probe Ga-pentixafor-c(RGDfK) for its potential in imaging tumors.
Methods: The effects of Ga-pentixafor-c(RGDfK) on cell viability, targeting specificity, and affinity were assessed in the U87MG cells.
ACS Appl Mater Interfaces
September 2025
School of Science, RMIT University, P.O. Box 2476, Melbourne 3001, Australia.
Lutein is a plant pigment beneficial for eye health and for preventing retinal-related diseases. However, lutein is unstable, with low oral bioavailability. In this study, lutein fromwas loaded into cubosome lipid nanocarriers, both neutral (lutein-MO) and cationic (lutein-MO-DOTAP); the release, stability, and retinal penetration of the drug were improved.
View Article and Find Full Text PDFBackground: Diabetes mellitus is still a major health problem affecting individuals all over the world. Type 1 diabetes mellitus occurs due to insulin deficiency resulting from the destruction of pancreatic β-cells. This study aimed to investigate how vitamin D reduces blood glucose levels and HbA1c.
View Article and Find Full Text PDFAnal Chem
September 2025
Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.
Infrared (IR) spectroscopic imaging combines the molecular specificity of vibrational spectroscopy with imaging capabilities of microscopy, potentially allowing for simultaneous quantitative observations of drugs and cellular response. However, accurately quantifying drug concentration within changing cells is complicated by the overlap between exogenous molecules' and native cellular spectra. Here, we address this challenge by developing a derivative of the widely used chemotherapeutic doxorubicin as a spectral bioprobe (DOX-IR) using a strongly absorbing metal-carbonyl moiety [(Cp)Fe(CO)].
View Article and Find Full Text PDF