25-Hydroxycholesterol modulates synaptic vesicle endocytosis at the mouse neuromuscular junction.

Pflugers Arch

Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia.

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Many synaptic vesicles undergo exocytosis in motor nerve terminals during neuromuscular communication. Endocytosis then recovers the synaptic vesicle pool and presynaptic membrane area. The kinetics of endocytosis may shape neuromuscular transmission, determining its long-term reliability. Here, using fluorescent dyes, the time course of endocytosis induced by intense activity of the phrenic nerve was studied at the mouse diaphragm neuromuscular junction. It was found that a significant portion of endocytic events occurs after the end of tetanic stimulation. Pitstop 2, clathrin inhibitor, and more profoundly dynole 34-2, dynamin antagonist, suppressed endocytic FM1-43 dye uptake both during and after tetanus. Furthermore, synaptic vesicles formed in the presence of the endocytic blockers released FM-dye during subsequent evoked exocytosis at a lower rate. 25-Hydroxycholesterol (25HC) is an oxysterol, ubiquitously synthetized from excessive cholesterol. In addition, its production greatly increases by activated macrophages. 25HC accelerated FM-dye endocytosis and its sequential evoked exocytosis, and dynole (but not pitstop) prevented 25HC-mediated enhancement of endocytic FM-dye uptake. The positive effects of 25HC were interfered with chelation of cytosolic Ca with a slow Ca buffer EGTA-AM, Ca antagonist TMB8, and sphingomyelin-hydrolyzing enzyme. In contrast to amphiphilic FM1-43 dye capture, 25HC reduced uptake of hydrophilic high molecular weight markers (labeled dextrans and toxin), which utilize bulk endocytosis to enter into nerve terminals. Thus, synaptic vesicle endocytosis had a relatively slow kinetics following the tetanic activity and can be accelerated by 25HC. The positive effect of 25HC on endocytosis engages a dynamin-dependent pathway, interconnected with cytoplasmic Ca and sphingomyelin integrity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00424-024-03058-0DOI Listing

Publication Analysis

Top Keywords

synaptic vesicle
12
endocytosis
8
vesicle endocytosis
8
neuromuscular junction
8
synaptic vesicles
8
nerve terminals
8
fm1-43 dye
8
evoked exocytosis
8
25hc
6
synaptic
5

Similar Publications

Stabilizing the retromer complex rescues synaptic dysfunction and endosomal trafficking deficits in an Alzheimer's disease mouse model.

Acta Neuropathol Commun

September 2025

Department of Biomedical and Clinical Sciences and Department of Clinical Pathology, Linköping University, 58185, Linköping, Sweden.

Disruptions in synaptic transmission and plasticity are early hallmarks of Alzheimer's disease (AD). Endosomal trafficking, mediated by the retromer complex, is essential for intracellular protein sorting, including the regulation of amyloid precursor protein (APP) processing. The VPS35 subunit, a key cargo-recognition component of the retromer, has been implicated in neurodegenerative diseases, with mutations such as L625P linked to early-onset AD.

View Article and Find Full Text PDF

Atypical delayed paired-pulse depression at an identified synapse.

J Physiol

September 2025

Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México City, México.

At chemical synapses, the interplay between the stimulation pattern, the dynamics of presynaptic calcium concentration and the use and replenishment of the vesicle pool causes plasticity phenomena such as synaptic facilitation and depression. These phenomena may coexist, with their relative contribution depending mostly on the initial release probability. Synaptic facilitation is caused by an increased probability of release as a result of presynaptic calcium accumulation, whereas synaptic depression is attributed to depletion of the releasable vesicle pool.

View Article and Find Full Text PDF

Bi-allelic deleterious variants in SNAPIN, which encodes a retrograde dynein adaptor, cause a prenatal-onset neurodevelopmental disorder.

Am J Hum Genet

September 2025

Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA; Department of Pediatrics and Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA. Electronic address: erid

Fetal brain anomalies identified by prenatal ultrasound and/or magnetic resonance imaging represent a considerable healthcare burden with ∼1-2/1,000 live births. To identify the underlying etiology, trio prenatal exome sequencing or genome sequencing (ES/GS) has emerged as a comprehensive diagnostic paradigm with a reported diagnostic rate up to ∼32%. Here, we report five unrelated families with six affected individuals that presented neuroanatomical, craniofacial, and skeletal anomalies, all harboring rare, bi-allelic deleterious variants in SNAPIN, which encodes SNARE-associated protein.

View Article and Find Full Text PDF

Shared Genetic Architecture Among Severe Mental Disorders: A System Biology Approach Based on Protein-Protein Interaction.

Brain Behav

September 2025

Pontificia Universidad Javeriana, Facultad De Ciencias, Departamento de Biología, Biología de Plantas y Sistemas Productivos, Bogotá, Colombia.

Introduction: The study explores shared genetic architecture among major psychiatric disorders-major depressive disorder, bipolar disorder, schizophrenia, and post-traumatic stress disorder-emphasizing their overlapping molecular pathways. Using public datasets, we identified shared genes and examined their functional implications through protein-protein interaction (PPI) networks and gene set enrichment analysis (GSEA).

Methods: Genes associated with each disorder were identified through the NCBI Gene database.

View Article and Find Full Text PDF

Simulations in three dimensions and time provide guidance on implantable, electroenzymatic glutamate sensor design; relative placement in planar sensor arrays; feasibility of sensing synaptic release events; and interpretation of sensor data. Electroenzymatic sensors based on the immobilization of oxidases on microelectrodes have proven valuable for the monitoring of neurotransmitter signaling in deep brain structures; however, the complex extracellular milieu featuring slow diffusive mass transport makes rational sensor design and data interpretation challenging. Simulations show that miniaturization of the disk-shaped device size below a radius of ∼25 μm improves sensitivity, spatial resolution, and the accuracy of glutamate concentration measurements based on calibration factors determined .

View Article and Find Full Text PDF