A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Self-Assembled Monolayer-Functionalized NiO Hole Injection layer for Improved Charge Injection in Quantum Dot Light-Emitting Diodes. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The development of quantum dot light-emitting diodes (QLEDs) represents a promising advancement in next-generation display technology. However, there are challenges, especially in achieving efficient hole injection, maintaining charge balance, and replacing low-stability organic materials such as PEDOT:PSS. To address these issues, in this study, self-assembled monolayers (SAMs) were employed to modify the surface properties of NiO, a hole injection material, within the structure of ITO/HIL/TFB/QDs/ZnMgO/Al QLEDs. Specifically, using Br-2PACz-based SAMs resulted in surface defect passivation, improved hole injection, reduced exciton quenching, and enhanced electrical characteristics. Notably, QLEDs based on (NiO+Br-2PACz) demonstrated a turn-on voltage of 2.4 V, a maximum external quantum efficiency (EQE) of 8.30%, a maximum luminance of 88,831 cd/m, and a maximum current efficiency of 32.78 cd/A. Compared to NiO-based QLEDs, these results represent a reduction in turn-on voltage by approximately 1.5 V, a 1.99-fold increase in EQE, and a 3.63-fold increase in luminance, indicating significantly enhanced performance with notable improvements in turn-on voltage, EQE, and luminance. They also showed higher EQE and luminance than PEDOT:PSS-based QLEDs; this could be attributed to the downshifting of energy levels by Br-2PACz, which reduced the hole injection barrier, increased the conductivity, and improved charge balance. In particular, the reduction in exciton quenching and the increase in electrical conductivity contributed significantly to the overall performance enhancement of the (NiO+Br-2PACz)-based QLEDs. This paper proposes a simple method for inorganic hole injection layer functionalize and application.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c16075DOI Listing

Publication Analysis

Top Keywords

hole injection
24
turn-on voltage
12
nio hole
8
injection layer
8
improved charge
8
quantum dot
8
dot light-emitting
8
light-emitting diodes
8
charge balance
8
exciton quenching
8

Similar Publications