A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Enhancing photocatalytic hydrogen peroxide generation by tuning hydrazone linkage density in covalent organic frameworks. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The conversion of solar energy into chemical energy or high-value chemicals has attracted considerable research interest in the context of the global energy crisis. Hydrogen peroxide (HO) is a versatile and powerful oxidizing agent widely used in chemical synthesis and medical disinfection. HO also serves as a clean energy source in fuel cells, generating electricity with zero-carbon emissions. Recently, the sustainable production of HO from water and oxygen using covalent organic frameworks (COFs) as photocatalysts has attracted considerable attention; however, systematic studies highlighting the role of linkages in determining photocatalytic performance are scarce. Under these circumstances, herein, we demonstrate that varying the imine and hydrazone linkages within the framework significantly influences photocatalytic HO production. COFs with high-density hydrazone linkages, providing optimal docking sites for water and oxygen, enhance HO generation activity (1588 μmol g h from pure water in the air), leading to highly efficient solar-to-chemical energy conversion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11711387PMC
http://dx.doi.org/10.1038/s41467-025-55894-yDOI Listing

Publication Analysis

Top Keywords

hydrogen peroxide
8
covalent organic
8
organic frameworks
8
attracted considerable
8
water oxygen
8
hydrazone linkages
8
energy
5
enhancing photocatalytic
4
photocatalytic hydrogen
4
peroxide generation
4

Similar Publications