Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

One of the key advantages of using a hydrogel is its superb control over elasticity obtained through variations of constituent polymer and water. The underlying molecular nature of a hydrogel is a fundamental origin of hydrogel mechanics. In this article, we report a Polyacrylamide (PAAm)-based hydrogel model using the MARTINI coarse-grained (CG) force field. The MARTINI hydrogel is molecularly developed through Iterative Boltzmann inversion (IBI) using all-atom molecular dynamics (AAMD), and its quality is evaluated through the experimental realization of the target hydrogel. The developed model offers a mechanically high-fidelity CG hydrogel that can access large-scale water-containing hydrogel behavior, which is difficult to explore through AAMD in practical time. With the modeled hydrogel, we reveal that the polymer conformation modulates the elasticity of the hydrogel from a folded state to a swollen state, confirmed by the Panyukov model. The results provide a robust bridge for linking the polymer conformations and alignment to their bulk deformation, enabling the multifaceted and material-specific predictions required for hydrogel applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c18162DOI Listing

Publication Analysis

Top Keywords

hydrogel
12
martini coarse-grained
8
elasticity swollen
4
swollen folded
4
folded polyacrylamide
4
polyacrylamide hydrogel
4
hydrogel martini
4
model
4
coarse-grained model
4
model key
4

Similar Publications

This study investigates a multifunctional hydrogel system integrating carboxymethyl cellulose (CMC) in a 3D-printed limonene (LIM) scaffold coated with poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS). The system allows to enhance wound healing, prevent infections, and monitor the healing progress. CMC is crosslinked with citric acid (CA) to form the hydrogel matrix (CMC-CA), while the 3D-printed limonene (LIM) scaffold is embedded within the hydrogel to provide mechanical support.

View Article and Find Full Text PDF

Transformative Therapies for Wound Care: Insights into Tissue Engineering and Regenerative Medicine.

Adv Exp Med Biol

September 2025

Department of Stem Cells & Regenerative Medicine, Center for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, India.

Wound healing is a dynamic and complex process that consists of four interconnected phases: hemostasis, inflammation, proliferation, and remodeling. This complex process is based on the coordinated actions of growth factors, cytokines, and other cellular interactions. However, conditions such as diabetes and chronic illnesses can disrupt this process and lead to nonhealing wounds or chronic ulcers.

View Article and Find Full Text PDF

Strain sensors have received considerable attention in personal healthcare due to their ability to monitor real-time human movement. However, the lack of chemical sensing capabilities in existing strain sensors limits their utility for continuous biometric monitoring. Although the development of dual wearable sensors capable of simultaneously monitoring human motion and biometric data presents significant challenges, the ability to fabricate these sensors with geometries tailored to individual users is highly desirable.

View Article and Find Full Text PDF

Engineering a cell-free bone regeneration platform using osteogenically primed MSC-EVs and nHAp-enriched IPN hydrogels.

Regen Med

September 2025

Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis School of Biological Sciences (SSBS), Symbiosis International, Deemed University, Lavale, Pune, India.

Aims: This study aimed to enhance the osteoinductive potential of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) by integrating them into a nano-hydroxyapatite (nHAp)-enriched hydrogel scaffold for bone regeneration applications.

Materials & Methods: EVs were isolated from naïve and osteogenically primed MSCs and characterized for morphology, cargo content, and cytocompatibility. Their uptake and osteoinductive activity were assessed using MC3T3 cells within a 3D interpenetrating network (IPN) hydrogel.

View Article and Find Full Text PDF

Recent Advances in Oral Gel Drug Delivery System: A Polymeric Approach.

Drug Dev Ind Pharm

September 2025

Department of Pharmaceutics, Mallige College of Pharmacy, Silvepura, Bangalore -560090.

ObjectivesThis review aims to explore gelling drug delivery systems with emphasis on formulation strategies, gelation mechanisms, administration routes, and therapeutic benefits. It also seeks to understand the role of different polymers in achieving optimal gelation and drug release profiles. Additionally, the review aims to identify current research gaps and highlight potential areas for future development and clinical translation.

View Article and Find Full Text PDF