Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Knowledge Gap: The aggregation of clay minerals in liquid water exemplifies colloidal self-assembly in nature. These negatively charged aluminosilicate platelets interact through multiple mechanisms with different sensitivities to particle shape, surface charge, aqueous chemistry, and interparticle distance and exhibit complex aggregation structures. Experiments have difficulty resolving the associated colloidal assemblages at the scale of individual particles. Conversely, all-atom molecular dynamics (MD) simulations provide detailed insight on clay colloidal interaction mechanisms, but they are limited to systems containing a few particles.
Simulations: We develop a new coarse-grained (CG) model capable of representing assemblages of hundreds of clay particles with accuracy approaching that of MD simulations, at a fraction of the computational cost. Our CG model is parameterized based on MD simulations of a pair of smectite clay particles in liquid water. A distinctive feature of our model is that it explicitly represents the electrical double layer (EDL), i.e., the cloud of charge-compensating cations that surrounds the clay particles.
Findings: Our model captures the simultaneous importance of long-range colloidal interactions (i.e., interactions consistent with simplified analytical models, already included in extant clay CG models) and short-range interactions such as ion correlation and surface and ion hydration effects. The resulting simulations correctly predict, at low solid-water ratios, the existence of ordered arrangements of parallel particles separated by water films with a thickness up to ∼10 nm and, at high solid-water ratios, the coexistence of crystalline and osmotic swelling states, in agreement with experimental observations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2024.12.053 | DOI Listing |