Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Multi-modal systems extract information about the environment using specialized sensors that are optimized based on the wavelength of the phenomenology and material interactions. To maximize the entropy, complementary systems operating in regions of non-overlapping wavelengths are optimal. VIS-IR (Visible-Infrared) systems have been at the forefront of multi-modal fusion research and are used extensively to represent information in all-day all-weather applications. Prior to image fusion, the image pairs have to be properly registered and mapped to a common resolution palette. However, due to differences in the device physics of image capture, information from VIS-IR sensors cannot be directly correlated, which is a major bottleneck for this area of research. In the absence of camera metadata, image registration is performed manually, which is not practical for large datasets. Most of the work published in this area assumes calibrated sensors and the availability of camera metadata providing registered image pairs, which limits the generalization capability of these systems. In this work, we propose a novel end-to-end pipeline termed for image registration and fusion. Firstly, we design a recursive crop and scale wavelet spectral decomposition (WSD) algorithm for automatically extracting the patch of visible data representing the thermal information. After data extraction, both the images are registered to a common resolution palette and forwarded to the DNN for image fusion. The fusion performance of the proposed pipeline is compared and quantified with state-of-the-art classical and DNN architectures for open-source and custom datasets demonstrating the efficacy of the pipeline. Furthermore, we also propose a novel keypoint-based metric for quantifying the quality of fused output.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11679027 | PMC |
http://dx.doi.org/10.3390/s24248217 | DOI Listing |