A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

High-Performance Porous Supports Based on Hydroxyl-Terminated Polysulfone and CO/CO-Selective Composite Membranes. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The scope of this work was to develop a thin-film composite (TFC) membrane for the separation of CO/CO mixtures, which are relevant for many processes of gas processing and gasification of carbon-based feedstock. Special attention was given to the development of highly permeable porous polysulfone (PSF) supports (more than 26,000 GPU for CO) since both the selective and support layers contribute significantly to the overall performance of the TFC membrane. The PSF porous support is widely used in commercial and lab-scale TFC membranes, and its porous structure and other exploitation parameters are set during the non-solvent-induced phase separation (NIPS) process. Since the casting solution properties (e.g., viscosity) and the interactions in a three-component system (polymer, solvent, and non-solvent) play noticeable roles in the NIPS process, polysulfone samples in a wide range of molecular weights (M = 76,000-122,000 g·mol) with terminal hydroxyl groups were synthesized for the first time. Commercial PSF with predominantly terminal chlorine groups (Ultrason S 6010) was used as a reference. The PSF samples were characterized by NMR, DSC, and TGA methods, and the Hansen solubility parameters were calculated. It was found that increasing the ratio of terminal -OH over -Cl groups improved the "solubility" of PSF in N-methyl-2-pyrrolidone (NMP) and water. A direct dependence of the gas permeance of porous supports on the coagulation rate of the casting solution was identified for the first time. It was shown that the use of synthesized PSF (M = 76,000 g·mol, M/M = 3.0, (-OH):(-Cl) ratio of 4.7:1) enabled a porous support with a CO permeance of 26,700 GPU to be obtained, while the support formed from a commercial PSF Ultrason S 6010 (M = 68,000 g·mol, M/M = 1.7, (-OH):(-Cl) ratio of 1:1.9) under the same conditions demonstrated 4300 GPU. The siloxane-based materials were used for the selective layer since the thin films based on rubbery polymers do not undergo the same accelerating physical aging as glassy polymers. Two types of materials were screened for the selective layer: synthesized polymethyltrifluoroethylacrylate siloxane-polydecylmethylsiloxane (50F3) copolymer, and polydimethylsiloxane (PDMS). 50F3 siloxane was studied for gas separation applications for the first time. It was shown that the permeance of composite membranes based on high-performance porous supports from the PSF samples synthesized was 3.5 times higher than that from similar composite membranes based on supports from a commercial Ultrason S 6010 PSF with a permeance value of 4300 GPU for CO. It was found that the enhanced gas permeance of composite membranes based on the highly permeable porous PSF supports developed was observed for both 50F3 polysiloxane and commercial PDMS. At the same time, the CO/CO selectivity of the composite membranes with a 50F3-selective layer (9.1-9.3) is 1.5 times higher than that of composite membranes with a PDMS-selective layer. This makes the F-containing 50F3 polysiloxane a promising polymer for CO/CO separation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11680076PMC
http://dx.doi.org/10.3390/polym16243453DOI Listing

Publication Analysis

Top Keywords

composite membranes
24
porous supports
12
ultrason 6010
12
membranes based
12
psf
10
high-performance porous
8
tfc membrane
8
highly permeable
8
permeable porous
8
psf supports
8

Similar Publications