Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The capsid proteins of many viruses are capable of spontaneous self-assembly into virus-like particles (VLPs), which do not contain the viral genome and are therefore not infectious. VLPs are structurally similar to their parent viruses and are therefore effectively recognized by the immune system and can induce strong humoral and cellular immune responses. The structural features of VLPs make them an attractive platform for the development of potential vaccines and diagnostic tools. Chimeric VLPs can be obtained by attaching foreign peptides to capsid proteins. Chimeric VLPs present multiple copies of the antigen on their surface, thereby increasing the effectiveness of the immune response. Recombinant VLPs can be produced in different expression systems. Plants are promising biofactories for the production of recombinant proteins, including VLPs. The main advantages of plant expression systems are the overall low cost and safety of plant-produced products due to the absence of pathogens common to plants and animals. This review provides an overview of the VLP platform as an approach to developing plant-produced vaccines, focusing on the use of transient expression systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11678810PMC
http://dx.doi.org/10.3390/plants13243564DOI Listing

Publication Analysis

Top Keywords

expression systems
12
virus-like particles
8
plants promising
8
capsid proteins
8
chimeric vlps
8
vlps
7
particles produced
4
produced plants
4
promising platform
4
platform recombinant
4

Similar Publications

The effect of non-functionalized polystyrene nanoparticles (PS-NPs) with diameters of 29, 44, and 72 nm on plasmid DNA integrity and the expression of genes involved in the architecture of chromatin was investigated in human peripheral blood mononuclear cells (PBMCs). The cells were incubated with PS-NPs at concentrations ranging from 0.001 to 100 µg/mL for 24 hours.

View Article and Find Full Text PDF

Species-specific gene expression manipulation in humanized livers of chimeric mice via siRNA-encapsulated lipid nanoparticle treatment.

Mol Ther Methods Clin Dev

June 2025

Eisai Co., Ltd., Tsukuba Research Laboratories, 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan.

Liver-humanized chimeric mice (PXB-mice) are widely utilized for predicting human pharmacokinetics (PK) and as human disease models. However, residual metabolic activity of mouse hepatocytes in chimeric mice can interfere with accurate human PK estimation. Lipid nanoparticle (LNP)-formulated small interfering RNA (siRNA) treatment makes it possible to eliminate the shortcomings of chimeras and create new models.

View Article and Find Full Text PDF

Unraveling epigenetic drivers of immune evasion in gliomas: mechanisms and therapeutic implications.

Front Immunol

September 2025

Precision Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.

Gliomas are the most common primary malignant tumors of the central nervous system (CNS), and despite progress in molecular diagnostics and targeted therapies, their prognosis remains poor. In recent years, immunotherapy has emerged as a promising treatment modality in cancer therapy. However, the inevitable immune evasion by tumor cells is a key barrier affecting therapeutic efficacy.

View Article and Find Full Text PDF

Background: Metabolic reprogramming is an important hallmark of cervical cancer (CC), and extensive studies have provided important information for translational and clinical oncology. Here we sought to determine metabolic association with molecular aberrations, telomere maintenance and outcomes in CC.

Methods: RNA sequencing data from TCGA cohort of CC was analyzed for their metabolic gene expression profile and consensus clustering was then performed to classify tumors into different groups/subtypes.

View Article and Find Full Text PDF

Isoform-specific expression patterns have been linked to stress-related psychiatric disorders such as major depressive disorder (MDD). To further explore their involvement, we constructed co-expression networks using total gene expression (TE) and isoform ratio (IR) data from affected ( = 210, 81% with depressive symptoms) and unaffected ( = 95) individuals. Networks were validated using advanced graph generation methods.

View Article and Find Full Text PDF