Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

, a halophilic unicellular chlorophyte, produces bioactive compounds and biofuels applicable to various industries. Despite its industrial significance, comprehensive studies on the morphological, physiological, and biochemical characteristics of the genus remain challenging. In this study, we characterized an axenically isolated green alga from a salt pond in Taean, Republic of Korea, and assessed its industrially relevant traits. The morphological characteristics were typical of , and molecular phylogenetic analysis of the SSU, ITS1-5.8S-ITS, LSU regions of rDNA, and L gene confirmed the isolate as strain DSTA20. The optimal temperature, salinity, and photon flux density required for its growth were determined to be 21 °C, 0.5 M NaCl, and 88 µmol m s, respectively. Dried biomass analysis revealed 42.87% total lipids, with major fatty acids, including α-linolenic acid (31.55%) and palmitic acid (21.06%). The alga produced high-value carotenoids, including β-carotene (2.47 mg g dry weight (DW)) and lutein (1.39 mg g DW), with peak levels at 0.25 M salinity. Glucose (195.5 mg g DW) was the predominant monosaccharide. These findings highlight the potential of DSTA20 for biodiesel production and as a source of ω-3 fatty acids, carotenoids, and glucose. Morphological traits provide insights relevant to the industrial potential of the species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11676334PMC
http://dx.doi.org/10.3390/microorganisms12122467DOI Listing

Publication Analysis

Top Keywords

physiological biochemical
8
biochemical characteristics
8
salt pond
8
republic korea
8
fatty acids
8
taxonomical physiological
4
characteristics dsta20
4
dsta20 hypersaline
4
hypersaline environments
4
environments taean
4

Similar Publications

No association between LDL cholesterol levels and cellular membrane integrity assessed with phase angle: Insights from the MALIPID study.

Clin Investig Arterioscler

September 2025

Department of Clinical Dietetics, Medical University of Lublin, ul. Chodzki 7, 20-059 Lublin, Poland. Electronic address:

Background: Although aggressive low-density lipoprotein cholesterol (LDL-C) reduction has demonstrated significant cardiovascular benefits, concerns have emerged regarding potential adverse effects of very low LDL-C on cellular functions, particularly membrane integrity as cholesterol constitutes an essential component of cellular membranes. The phase angle (PhA), derived from bioelectrical impedance analysis (BIA) reflects cellular membranes integrity and nutritional status. The MALIPID study aimed to assess if LDL-C levels are associated with PhA in high cardiovascular risk patients.

View Article and Find Full Text PDF

The salt-inducible kinase (SIK) family encompasses three isoforms, SIK1, SIK2, and SIK3, which are members of the AMP-activated protein kinase (AMPK) family of serine/threonine protein kinases. SIK inhibition has emerged as a potential therapeutic approach across multiple indications, as SIKs regulate a diverse set of physiological processes such as metabolism, bone remodeling, immune response, malignancies, skin pigmentation, and circadian rhythm. Within isoform-specific SIK inhibitors there is a need to understand the distinct role of each protein, and here we describe the first SIK1 selective inhibitors.

View Article and Find Full Text PDF

Humans are exposed to mixtures of chemical pollutants from various environmental sources at all stages of life. Understanding how these compounds are causally linked to population health effects is challenging because of the ethical limitations on studying controlled human exposures and the complexity of the many potential molecular mechanisms involved. We hypothesized that studies using a combination of in vivo murine stress reporter models together with non-targeted global transcriptome analysis will define the toxic mechanisms of complex chemical mixtures in a physiological context.

View Article and Find Full Text PDF

Plants being rooted entities, are highly susceptible to diverse abiotic stresses that impair their growth and development. To encounter these adverse conditions, plants have developed several morpho-physiological and biochemical strategies. In particular, nutrients such as nitrogen, phosphorous, potassium, sulfur and iron-play an important role in enhancing stress resilience by promoting growth and regulating key signaling pathways.

View Article and Find Full Text PDF

TabHLH86 regulates TaPEPC10 expression and mediates cadmium tolerance in wheat.

Plant Physiol Biochem

September 2025

School of Life Sciences, Guizhou Normal University, Guiyang, 550000, Guizhou Province, China. Electronic address:

In this study, we elucidated that wheat TaPEPC10, regulated by the transcription factor TabHLH86, reduces tolerance to cadmium (Cd) stress. To investigate the function and regulatory mechanism of phosphoenolpyruvate carboxylase (PEPC) genes in wheat under Cd stress, we employed bioinformatics approaches to identify 18 PEPC genes and predicted TaPEPC10 as a key responder based on its expression profile under Cd stress. We conducted phenotypic analyses and measured various physiological and biochemical indices in TaPEPC10 mutant wheat under Cd stress.

View Article and Find Full Text PDF