98%
921
2 minutes
20
The pluripotent stem cell (PSC)-derived human primordial germ cell-like cells (PGCLCs) are a cell culture-derived surrogate model of embryonic primordial germ cells. Upon differentiation of PSCs to PGCLCs, multiple loci of HML-2, the hominoid-specific human endogenous retrovirus (HERV), are strongly activated, which is necessary for PSC differentiation to PGCLCs. In PSCs, strongly activated loci of HERV-H family HERVs create chromatin contacts, which are required for the pluripotency. Chromatin contacts in the genome of human PSCs and PGCLCs were determined by Hi-C sequencing, and their locations were compared with those of HML-2 loci strongly activated in PGCLCs but silenced in the precursor naïve iPSCs. In both iPSCs and PGCLCs, the size of chromatin contacts were found to be around one megabase, which corresponds to the Topologically Associated Domains in the human genome but is slightly larger in PGCLCs than iPSCs. The number of small-sized chromatin contacts diminished while numbers of larger-sized contacts increased. The distances between chromatin contacts newly formed in PGCLCs and the degrees of activation of the closest HML-2 loci showed significant inverse correlation. Our study provides evidence that strong activation of HML-2 provirus loci may be associated with newly formed chromatin contacts in their vicinity, potentially contributing to PSC differentiation to the germ cell lineage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11728338 | PMC |
http://dx.doi.org/10.3390/ijms252413639 | DOI Listing |
J Chem Phys
September 2025
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
We study how protein condensates respond to a site of active RNA transcription (i.e., a gene promoter) due to electrostatic protein-RNA interactions.
View Article and Find Full Text PDFJBMR Plus
October 2025
Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia.
Genome-wide association studies (GWAS) relevant to osteoporosis have identified hundreds of loci; however, understanding how these variants influence the phenotype is complicated because most reside in non-coding DNA sequence that serves as transcriptional enhancers and repressors. To advance knowledge on these regulatory elements in osteoclasts (OCs), we performed Micro-C analysis, which informs on the genome topology of these cells and integrated the results with transcriptome and GWAS data to further define loci linked to BMD. Using blood cells isolated from 4 healthy participants aged 31-61 yr, we cultured OC in vitro and generated a Micro-C chromatin conformation capture dataset.
View Article and Find Full Text PDFBMB Rep
September 2025
Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
DNA, a large molecule located in the nucleus, carries essential genetic information, including gene loci and cis-regulatory elements. Despite its extensive length, DNA is compactly stored within the limited space of the nucleus due to its hierarchical three-dimensional (3D) organization. In this structure, DNA is organized into territories known as topologically associated domains (TADs).
View Article and Find Full Text PDFGenes Immun
September 2025
Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA.
Double-strand breaks represent the most dangerous form of DNA damage, and in resting cells, these breaks are sealed via the non-homologous end joining (NHEJ) factor Ligase IV (LIG4). Excessive NHEJ may be genotoxic, necessitating multiple mechanisms to control NHEJ activity. However, a clear mechanism of transcriptional control for them has not yet been identified.
View Article and Find Full Text PDFDiverse epigenetic regulatory mechanisms ensure and regulate cellular diversity. Among others, the histone 3 lysine 9 me3 (H3K9me3) post translational modification participates in silencing lineage-inappropriate genes. H3K9me3 restricts access of transcription factors and other regulatory proteins to cell-fate controlled genes.
View Article and Find Full Text PDF